Published:20 May 2023,
Published Online:03 February 2023,
Received:04 November 2022,
Accepted:22 December 2022
Scan for full text
Cite this article
Nanoflowers (NFs) have received much attention due to their hierarchical structures and diverse functions or applications. However, up to now, most reported NFs are synthesized based on inorganic compounds, and the reports on organic polymeric NFs are greatly limited. Here, a crystalline alternating copolymer P(DHB-a-DDT) is synthesized by the click polymerization of 1,3-butadiene diepoxide (BDE) and 1,10-decanedithiol (DDT). It is found that P(DHB-a-DDT) could self-assemble into NFs on a large scale by cooling in a mixed solvent (DMF/MeCN = 1/1, V/V) from 80 ℃ to room temperature. The formation mechanism demonstrated that NFs are porous and composed of nanosheets. The size of NFs could be tuned from 3.3 μm to 12.6 μm by changing the polymer concentration. The self-assembled NFs can be controlled by the factors of polymer concentration, the volume ratio of DMF/MeCN, type of precipitant and polymer composition. Further, the functionalization of NFs is easy to carry out. For example, NFs loaded with Ag particles (AgNP-NFs) are prepared readily by the coordination of sulfur and silver ions followed with in situ reduction. The SEM image show that AgNP-NFs maintained the flower-like morphology, and there are many small Ag nanoparticles (AgNPs) on the surface and in the cavity of AgNP-NFs with the average diameter of (88.4±34.5) nm. As a result, AgNP-NFs with low Ag content of 11.9 wt% exhibit enhanced surface-enhanced Raman scattering (SERS) with a detection limit of 1×10-8 mol/L using R6G as the probe molecule,which is two orders of magnitude lower than that of exfoliated AgNPs. Furthermore, AgNP-NFs can be used in single-particle SERS detection with high sensitivity and low detection cost because of their micron size, good dispersibility and porous structure. These findings extend the self-assembled behavior of alternating copolymers (ACPs) and enrich the types of polymeric NFs as well as their functions.
通过交替共聚物溶液自组装大量制备纳米花,利用纳米花上的硫原子进行原位银颗粒负载实现单颗粒SERS检测.
纳米花(NFs)是一种花状的纳米颗粒,具有多级的结构和较大的比表面积,在催化、吸附、分析科学、生物传感、药物递送等领域展现出了广泛的应用,因此引起了广泛关注[
与无机纳米花相比,有机聚合物纳米花具有稳定性好、分散性好以及功能化容易的特点. 然而,据我们所知,可以用来制备纳米花的聚合物是非常有限的,目前主要包括聚苯胺[
聚合物自组装是一种制备各种各样的纳米材料和功能材料的非常实用的策略[
在本文中,我们通过点击聚合合成了结晶性的交替共聚物P(DHB-a-DDT),这种聚合物可以通过在溶液中降温的方法自组装为纳米花(
Fig. 1 Schematic diagram of the preparation process of NFs and AgNP-NFs as well as their surface-enhanced Raman scattering (SERS) detection.
二环氧化-1,3-丁二烯(TCI)、1,5-己二烯二环氧化物(TCI)、1,10-癸二硫醇(TCI)、1,8-辛二硫醇(Adamas)、1,6-己二硫醇(Adamas)、1,4-丁二硫醇(TCI)、乙酸酐(国药-沪试)、4-二甲氨基吡啶(Adamas)、三乙胺(Adamas),三氯甲烷(Greagent)、甲醇(Greagent)、正己烷(Greagent),N,N-二甲基甲酰胺(Greagent)、硝酸银(Greagent)、罗丹明6G (Adamas),以及抗坏血酸钠(Adamas)均直接使用.
1.2.1 核磁氢谱(1H-NMR)和碳谱(13C-NMR)
1H-NMR和13C-NMR在Bruker AVANCE III HD 400或Bruker AVANCE III HD 500核磁共振波谱仪上测试. P(DHB-a-DDT)使用DMSO-d6为溶剂,P(DHH-a-DDT)和酯化封端后的交替共聚物使用CDCl3为溶剂,测试温度为25 ℃,使用TMS为内标.
1.2.2 凝胶渗透色谱(GPC)
GPC在LC-20A凝胶渗透色谱仪上测试. 流动相为THF,标样为PS. 凝胶柱为KF-802和804(Shodex, 300×8 mm),流速为1.0 mL/min,进样量为50 μL,测试温度为40 ℃.
1.2.3 光学显微镜
光学显微镜图片在DM-4500B光学显微镜上拍取.
1.2.4 扫描电子显微镜
扫描电镜图片(SEM)在场发射扫描电子显微镜(Nova NanoSEM 450)上拍取. 加速电压为10 kV.
1.2.5 示差扫描量热仪(DSC)
DSC曲线在Q2000调制型示差扫描量热仪上测试. 升降温速率为10 ℃/min. 温度扫描范围为-80~180 ℃.
1.2.6 X射线衍射谱(XRD)
XRD在Mini Flex 600 X射线衍射仪上测试. 电压为40 kV,电流15 mA. X射线光管:Cu靶(λ = 0.154 nm). 2θ扫描范围为3º~60º,扫描速度为6 (º)/min.
1.2.7 紫外-可见(UV-Vis)吸收光谱
UV-Vis吸收光谱在Perkin Elmer Lambda 20紫外可见分光光度计上测试,波长范围为200~800 nm.
1.2.8 紫外-可见漫反射光谱(UV-Vis DRS)
UV-Vis DRS在Lamda 950紫外可见近红外分光光度计上测试.
1.2.9 氮气等温吸脱附曲线
氮气等温吸脱附曲线在ASAP 2460全自动比表面与孔隙度分析仪上测试. 样品在测试前,先在30 ℃下真空脱气12 h. 通过NLDFT方法计算孔径分布曲线.
1.2.10 电感耦合等离子光谱(ICP)
ICP在Avio 500电感耦合等离子体发射光谱仪上测试.
1.2.11 拉曼光谱
拉曼光谱在Renishaw inVia Qontor共焦显微拉曼光谱仪上测试. 激光器波长为532 nm,激光功率为0.032 mW,曝光时间为1 s,采集次数为1次,使用50倍的长焦物镜进行样品观察(L 50×/0.50). 制样过程如下:将0.9 mL 1 mg/mL的AgNP-NPs的水溶液与0.1 mL不同浓度的R6G的水溶液(10-5、10-6、10-7、10-8和10-9 mol/L)混合. 12 h后,将混合溶液过滤,得到吸附R6G的Ag-NPs,然后进行拉曼光谱采集.
单颗粒SERS检测的测试条件与上述相同,制样过程如下:首先,取不同浓度的AgNP-NFs的水溶液(1、0.1、0.01和0.001 mg/mL) 50 μL滴在硅片上(1 cm × 1 cm)干燥作为SERS基底. 然后,取50 μL R6G溶液(1×10-8 mol/L)滴在上述SERS基底上,确保与AgNP-NFs溶液的滴加区域重叠. 溶液干燥后,用共焦显微拉曼光谱仪上配备的显微镜找到单个AgNP-NFs颗粒后进行拉曼光谱采集.
1.3.1 交替共聚物P(DHB-a-DDT)的合成
P(DHB-a-DDT)的合成是通过巯基和环氧的点击聚合合成的. 合成路线如电子支持信息示意图S1所示,合成过程如下:1,10-癸二硫醇(0.03 mol),二环氧化-1,3-丁二烯(0.03 mol)和三乙胺(0.06 mol)用3 mL甲醇和10 mL DMF溶解,首先在室温下搅拌2 h,然后在60 ℃下继续反应26 h. 反应结束后,产物在乙醇中沉淀,收集沉淀并在60 ℃下真空干燥,得最终产物.
1.3.2 交替共聚物P(DHB-a-DDT)的酯化封端
P(DHB-a-DDT)的酯化封端如电子支持信息示意图S2所示,合成过程如下:P(DHB-a-DDT) (0.86 mmol重复单元),乙酸酐(17.2 mmol)和4-二甲氨基吡啶(10 mg)分散在6 mL氯仿中,然后在耐压瓶中70 ℃反应27 h. 反应结束后,将溶剂旋干,用少量氯仿溶解后在正己烷中沉淀3次. 将得到的沉淀在60 ℃下真空干燥后,收集产物.
1.3.3 纳米花的自组装
纳米花的自组装过程如下:在80 ℃下将2 mL P(DHB-a-DDT)的DMF溶液(1 mg/mL)与2 mL乙腈混合,然后在80 ℃烘箱中自然冷却至室温(22 ℃). 72 h后,用乙腈离心洗涤3次,得到组装体.
1.3.4 负载银颗粒的纳米花(AgNP-NFs)的制备
负载银颗粒的纳米花的制备过程分为两步. 第一步,将得到的纳米花(100 mg,0.342 mmol重复单元)在40 mL水中分散,加入0.5 mol/L硝酸银溶液1.368 mL (0.684 mmol AgNO3),反应48 h. 离心洗涤3次后,得到银离子配位的纳米花. 第二步,将得到的银离子配位的纳米花用40 mL去离子水重新分散,加入抗坏血酸钠溶液(203 mg抗坏血酸钠用20 mL去离子水溶解),反应12 h. 离心洗涤3次后,得到负载银颗粒的纳米花.
如
纳米花的自组装是通过在混合溶剂(DMF/MeCN=1/1, V/V)中降温的方法实现的. 其中DMF是交替共聚物P(DHB-a-DDT)的良溶剂,MeCN是沉淀剂. 当从80 ℃冷却至室温后,溶液底部会有大量白色沉淀产生. 组装体的形貌通过光学显微镜(OM)和扫描电子显微镜(SEM)进行表征. 如
Fig. 2 Morphology of NFs. (a) OM image (left) and corresponding POM image (right). (b) Low-magnification SEM image (Inset: photograph of NFs). (c) High-magnification SEM image of NFs (Inset: enlarged image of a single NF). (d) Variation of diameter of NFs as a function of polymer concentration in DMF. (e, f) SEM images of the internal structure of NFs obtained by grinding in liquid nitrogen.
纳米花的自组装机理是通过捕获自组装过程中的中间体来研究的(电子支持信息图S7). 在不同时刻获得的中间体如图
Fig. 3 Formation mechanism of NFs. (a‒f) SEM images of intermediates in the self-assembly of NFs as a function of growth time. (g) Schematic diagram of the proposed formation mechanism of NFs.
纳米花的自组装可以通过聚合物浓度、DMF/MeCN的体积比和沉淀剂的类型等因素控制. 首先,可以通过控制聚合物浓度来调节纳米花的大小(
纳米花的自组装也与聚合物组成有关. 如电子支持信息图S13~S15所示,将二硫醇单体从1,10-癸烷二硫醇(DDT)变为1,8-辛烷二硫醇(ODT)和1,6-己二硫醇(HDT),仍然可以得到纳米花. 然而,如果使用1,4-丁二硫醇(BDT)作为二硫醇单体,则相应的聚合物不能自组装为纳米花,这可能是由于该聚合物的结晶性差的原因(电子支持信息图S14). 此外,将二环氧单体从1,3-丁二烯二环氧化物(BDE)变为1,5-己二烯二环氧化物(HDE)后,相应的聚合物是不能自组装为纳米花的,只能得到含有微球的不规则聚集体(电子支持信息图S15(c)). 值得注意的是,交替共聚物的分子量对纳米花的组装是基本没有影响的,如图电子支持信息图S16所示,3种不同分子量的交替共聚物都可以自组装为纳米花,而且纳米花的粒径基本一致,都在7~8 μm之间. 这一点和我们前期的理论预测一致,交替共聚物自组装在分子量超过阈值后,其自组装行为和分子量及分子量分布基本无关[
考虑到交替共聚物上有许多活性位点,如硫原子和羟基,纳米花可以很容易地进行功能化. 例如可以通过聚合物上的硫原子与银离子的配位来获得银离子配位的纳米花[
Fig. 4 Morphology and SERS detection of AgNP-NFs. (a) Low-magnification SEM image and (b) high-magnification SEM image of AgNP-NFs. (c) Raman signals of R6G at different concentrations (1×10-6‒1×10-10 mol/L) using AgNP-NFs as SERS substrates. (d) Raman signals of R6G (1×10-8 mol/L) recorded from a single particle with different concentrations of AgNP-NFs (inset: OM image of a single AgNP-NF taken by optical microscope equipped on the Raman spectrophotometer, scale bar=20 μm).
贵金属纳米颗粒,如Au和Ag,由于其表面等离子体共振(LSPR)效应,是表面增强拉曼散射(SERS)最常用的基底材料[
使用R6G作为探针分子对AgNP-NFs的SERS性能进行研究. 不同浓度的探针分子(1×10-6~1×10-10 mol/L)与AgNP-NFs混合12 h后,过滤出来进行拉曼检测. 明显地,拉曼信号强度强烈依赖于R6G浓度,随着R6G浓度的降低而逐渐减弱(
AgNP-NFs由于其微米级的尺寸、良好的分散性和多孔结构,可以用于单颗粒SERS检测. 随着AgNP-NFs含量(1、0.1、0.01至0.001 mg/mL)的降低,R6G (1×10-8 mol/L)的拉曼信号强度基本保持不变(
本文通过硫醇和环氧的点击聚合合成了交替共聚物P(DHB-a-DDT),它可以通过在混合溶剂中降温的方法,大量制备微米尺寸的纳米花. 组装机理研究表明,纳米花由纳米片堆积而成. 通过改变聚合物浓度,可以实现纳米花粒径的调节(3.3~12.6 μm). 进一步地,利用聚合物上硫原子和Ag离子之间的配位作用然后原位还原,制备了负载银颗粒的纳米花,其中Ag含量为11.9 wt%. 具有低Ag含量的AgNP-NFs显示出优异的SERS性能,其检测限为1×10-8 mol/L. 与从AgNP-NFs上剥离的AgNPs相比,AgNP-NFs的SERS检测限比AgNPs低2个数量级,这是AgNPs和纳米花状结构协同作用的结果. 同时,AgNP-NFs可用于单颗粒SERS检测,既保证了高的灵敏度又极大地降低了检测成本. 这项工作证明了使用交替共聚物制备纳米花的可行性,扩展了交替共聚物的自组装行为,丰富了聚合物纳米花的类型和功能.
Sun H.; Du J. Intramolecular cyclization-induced crystallization-driven self-assembly of an amorphous poly(amic acid). Macromolecules, 2020, 53(24), 11033-11039. doi:10.1021/acs.macromol.0c02186 [Baidu Scholar]
Xu Z.; Zhuang X.; Yang C.; Cao J.; Yao Z.; Tang Y.; Jiang J.; Wu D.; Feng X. Nitrogen‐doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater., 2016, 28(10), 1981-1987. doi:10.1002/adma.201505131 [Baidu Scholar]
Liu Y.; Ji X.; He Z. Organic-inorganic nanoflowers: from design strategy to biomedical applications. Nanoscale, 2019, 11(37), 17179-17194. doi:10.1039/c9nr05446d [Baidu Scholar]
Kamil M. P.; Ko Y. G. Electrochemically stable and catalytically active coatings based on self-assembly of protein-inorganic nanoflowers on plasma-electrolyzed platform. ACS Appl. Mater. Interfaces, 2021, 13(33), 39854-39867. doi:10.1021/acsami.1c09787 [Baidu Scholar]
Guan H.; Du X.; Yi Y.; Kang X.; Li K.; Pei X.; Zhao Z.; Zhang J.; Li D. Minimal TiO2 coupled with conductive polymer-stimulated synergistic effect on fast and reversible sodium-ion storage for bismuth sulfide. ACS Appl. Mater. Interfaces, 2021, 13(46), 55051-55059. doi:10.1021/acsami.1c16316 [Baidu Scholar]
Yang H.; Guo H.; Li X.; Ren W.; Song R. Regulation effects of Co2+ on the construction of a Cu-Ni(OH)2@CoO nanoflower cluster heterojunction: a critical factor in obtaining a high-performance battery-type hybrid supercapacitor. Nanoscale, 2021, 13(43), 18182-18191. doi:10.1039/d1nr04668c [Baidu Scholar]
Zhao S.; Long Y.; Su Y.; Wang S.; Zhang Z.; Zhang X. Cobalt‐enhanced mass transfer and catalytic production of sulfate radicals in mof‐derived CeO2·Co3O4 nanoflowers for efficient degradation of antibiotics. Small, 2021, 17(43), 2101393. [Baidu Scholar]
Ge J.; Lei J.; Zare R. N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol., 2012, 7(7), 428-432. doi:10.1038/nnano.2012.80 [Baidu Scholar]
Guo L.; Bai X.; Xue H.; Sun J.; Song T.; Zhang S.; Qin L.; Huang K.; He F.; Wang Q. Mof-derived hierarchical 3D bi-doped CoP nanoflower eletrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Chem. Commun., 2020, 56(56), 7702-7705. doi:10.1039/c9cc09684a [Baidu Scholar]
Hu Y.; Gao X.; Yu L.; Wang Y.; Ning J.; Xu S.; Lou X. W. Carbon‐coated cds petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem. Int. Ed., 2013, 52(21), 5636-5639. doi:10.1002/anie.201301709 [Baidu Scholar]
Liu K.; Bai Y.; Zhang L.; Yang Z.; Fan Q.; Zheng H.; Yin Y.; Gao C. Porous Au-Ag nanospheres with high-density and highly accessible hotspots for sers analysis. Nano Lett., 2016, 16(6), 3675-3681. doi:10.1021/acs.nanolett.6b00868 [Baidu Scholar]
Zhou C.; Han J.; Guo R. Controllable synthesis of polyaniline multidimensional architectures: from plate-like structures to flower-like superstructures. Macromolecules, 2008, 41(17), 6473-6479. doi:10.1021/ma800500u [Baidu Scholar]
Matsushima Y.; Nishiyabu R.; Takanashi N.; Haruta M.; Kimura H.; Kubo Y. Boronate self-assemblies with embedded Au nanoparticles: preparation, characterization and their catalytic activities for the reduction of nitroaromatic compounds. J. Mater. Chem., 2012, 22(45), 24124-24131. doi:10.1039/c2jm34797k [Baidu Scholar]
Zhang K.; Geissler A.; Chen X.; Rosenfeldt S.; Yang Y.; Förster S.; Müller-Plathe F. Polymeric flower-like microparticles from self-assembled cellulose stearoyl esters. ACS Macro Lett., 2015, 4(2), 214-219. doi:10.1021/mz500788e [Baidu Scholar]
Cai B.; Zhang S.; Zhou Y. Green stereoregular polymerization of poly(methyl methacrylate)s through vesicular catalysis. CCS Chem., 2022, 4(4), 1337-1346. doi:10.31635/ccschem.021.202101011 [Baidu Scholar]
Zuo Q.; Feng K.; Zhong J.; Mai Y.; Zhou Y. Single-metal-atom polymeric unimolecular micelles for switchable photocatalytic H2 evolution. CCS Chem., 2020, 3(7), 1963-1971. doi:10.31635/ccschem.020.202000486 [Baidu Scholar]
戚美微, 刘勇, 周永丰. Janus超支化超分子聚合物的构筑及电化学响应性自组装行为研究. 化学学报, 2020, 78(6), 528-533. doi:10.6023/A20040121 [Baidu Scholar]
Chen Y. Q.; Jin B. X.; Li Q.; Luo Y. J.; Chi S. M.; Li X. Y. Precise supramolecular polymerization of liquid crystalline block copolymer initiated by heavy metallic salts. Chinese J. Polym. Sci., 2022, 40(6), 624-630. doi:10.1007/s10118-022-2715-3 [Baidu Scholar]
戚美微, 黄卫, 肖谷雨, 朱新远, 高超, 周永丰. 超支化聚合物的合成和自组装研究. 高分子学报, 2017, (2), 214-228. doi:10.11777/j.issn1000-3304.2017.16324 [Baidu Scholar]
李玉莲, 宋东坡, 李悦生. 三嵌段共聚物刷诱导乳液自组装制备响应性多孔结构色微球. 高分子学报, 2021, 52(12), 1591-1602. doi:10.11777/j.issn1000-3304.2021.21146 [Baidu Scholar]
姚灏, 王景霞, 田威. 超分子拓扑高分子: 合成, 组装及功能. 高分子学报, 2021, 52(6), 578-601. doi:10.11777/j.issn1000-3304.2021.21010 [Baidu Scholar]
Chen J.; Yu C.; Shi Z.; Yu S.; Lu Z.; Jiang W.; Zhang M.; He W.; Zhou Y.; Yan D. Ultrathin alternating copolymer nanotubes with readily tunable surface functionalities. Angew. Chem. Int. Ed., 2015, 54(12), 3621-3625. doi:10.1002/anie.201408290 [Baidu Scholar]
Li C.; Chen C.; Li S.; Rasheed T.; Huang P.; Huang T.; Zhang Y.; Huang W.; Zhou Y. Self-assembly and functionalization of alternating copolymer vesicles. Polym. Chem., 2017, 8(32), 4688-4695. doi:10.1039/c7py00908a [Baidu Scholar]
Shao Q.; Zhang S.; Hu Z.; Zhou Y. Multimode self‐oscillating vesicle transformers. Angew. Chem. Int. Ed., 2020, 59(39), 17125-17129. doi:10.1002/anie.202007840 [Baidu Scholar]
Huang P.; Qi M.; Chen C.; Xu F.; Li S.; Xu Q.; Pan H.; Wang Y.; Yu C.; Zhang S.; Zhou Y. Asymmetric vesicles self-assembled by amphiphilic sequence-controlled polymers. ACS Macro Lett., 2021, 10(7), 894-900. doi:10.1021/acsmacrolett.1c00301 [Baidu Scholar]
Zhang Y. L.; Li C. L.; Rasheed T.; Huang P.; Zhou Y. F. Synthesis, self-assembly and electrode application of mussel-inspired alternating copolymers. Chinese J. Polym. Sci., 2018, 36(8), 897-904. doi:10.1007/s10118-018-2151-6 [Baidu Scholar]
Yin R.; Sahoo D.; Xu F.; Huang W.; Zhou Y. Scalable preparation of crystalline nanorods through sequential polymerization-induced and crystallization-driven self-assembly of alternating copolymers. Polym. Chem., 2020, 11(13), 2312-2317. doi:10.1039/d0py00093k [Baidu Scholar]
Li C.; Rasheed T.; Tian H.; Huang P.; Mai Y.; Huang W.; Zhou Y. Solution self-assembly of an alternating copolymer toward hollow carbon nanospheres with uniform micropores. ACS Macro Lett., 2019, 8(3), 331-336. doi:10.1021/acsmacrolett.9b00009 [Baidu Scholar]
Xu Q.; Huang T.; Li S.; Li K.; Li C.; Liu Y.; Wang Y.; Yu C.; Zhou Y. Emulsion‐assisted polymerization‐induced hierarchical self‐assembly of giant sea urchin‐like aggregates on a large scale. Angew. Chem. Int. Ed., 2018, 57(27), 8043-8047. doi:10.1002/anie.201802833 [Baidu Scholar]
Zhang C.; Pan H.; Chen C.; Zhou Y. Regioisomer-directed self-assembly of alternating copolymers for highly enhanced photocatalytic H2 evolution. ACS Macro Lett., 2022, 11(4), 434-440. doi:10.1021/acsmacrolett.2c00035 [Baidu Scholar]
Xu Q.; Li S.; Qi M.; Gao J.; Chen C.; Huang P.; Wang Y.; Yu C.; Huang W.; Zhou Y. Membrane-bound inward-growth of artificial cytoskeletons and their selective disassembly. Angew. Chem. Int. Ed., 2022, 61(26), e202204440. doi:10.1002/anie.202204440 [Baidu Scholar]
Zhang M.; Zuo Q.; Wang L.; Yu S.; Mai Y.; Zhou Y. Poly(ionic liquid)-based polymer composites as high-performance solid-state electrolytes: Benefiting from nanophase separation and alternating polymer architecture. Chem. Commun., 2020, 56(57), 7929-7932. doi:10.1039/d0cc03281f [Baidu Scholar]
Sha X.; Zhang C.; Qi M.; Zheng L.; Cai B.; Chen F.; Wang Y.; Zhou Y. Mussel-inspired alternating copolymer as a high-performance adhesive material both at dry and under-seawater conditions. Macromol. Rapid Commun., 2020, 41(10), 2000055. doi:10.1002/marc.202000055 [Baidu Scholar]
Kim J.; Sim K.; Cha S.; Oh J. W.; Nam J. M. Single-particle analysis on plasmonic nanogap systems for quantitative sers. J. Raman Spectrosc., 2021, 52(2), 375-385. doi:10.1002/jrs.6030 [Baidu Scholar]
Sonntag M. D.; Klingsporn J. M.; Zrimsek A. B.; Sharma B.; Ruvuna L. K.; Van Duyne R. P. Molecular plasmonics for nanoscale spectroscopy. Chem. Soc. Rev., 2014, 43(4), 1230-1247. doi:10.1039/c3cs60187k [Baidu Scholar]
Visaveliya N. R.; Mazetyte-Stasinskiene R.; Köhler J. M. Stationary, continuous, and sequential surface-enhanced raman scattering sensing based on the nanoscale and microscale polymer-metal composite sensor particles through microfluidics. Adv. Opt. Mater., 2022, 10(7), 2102757. doi:10.1002/adom.202102757 [Baidu Scholar]
Heeley E. L.; Hughes D. J.; El Aziz Y.; Taylor P. G.; Bassindale A. R. Linear long alkyl chain substituted poss cages: The effect of alkyl chain length on the self-assembled packing morphology. Macromolecules, 2013, 46(12), 4944-4954. doi:10.1021/ma400635e [Baidu Scholar]
El Aziz Y.; Bassindale A. R.; Taylor P. G.; Stephenson R. A.; Hursthouse M. B.; Harrington R. W.; Clegg W. X-ray crystal structures, packing behavior, and thermal stability studies of a homologous series of n-alkyl-substituted polyhedral oligomeric silsesquioxanes. Macromolecules, 2013, 46(3), 988-1001. doi:10.1021/ma302229v [Baidu Scholar]
Li S. L.; Yu C. Y.; Zhou Y. F. Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations. Sci. China Chem., 2019, 62, 226-237. doi:10.1007/s11426-018-9360-3 [Baidu Scholar]
Ren W.; Yang Y.; Yang J.; Duan H.; Zhao G.; Liu Y. Multifunctional and corrosion resistant poly(phenylene sulfide)/ag composites for electromagnetic interference shielding. Chem. Eng. J., 2021, 415, 129052. doi:10.1016/j.cej.2021.129052 [Baidu Scholar]
Black J. R.; Champness N. R.; Levason W.; Reid G. Unique structural features in silver (i) dithioether complexes: The single-crystal structures of [Agn(PhSCH2CH2CH2SPh)2n] (BF4)n·0.5nH2O and [Agn(MeSCH2CH2CH2SMe)n] (BF4)n. J. Chem. Soc., Chem. Commun., 1995, (12), 1277-1278. doi:10.1039/c39950001277 [Baidu Scholar]
Schlücker S. Surface‐enhanced raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed., 2014, 53(19), 4756-4795. doi:10.1002/anie.201205748 [Baidu Scholar]
Nie S.; Emory S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303), 1102-1106. doi:10.1126/science.275.5303.1102 [Baidu Scholar]
Zhang Q.; Li W.; Moran C.; Zeng J.; Chen J.; Wen L. P.; Xia Y. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J. Am. Chem. Soc., 2010, 132(32), 11372-11378. doi:10.1021/ja104931h [Baidu Scholar]
Wang H.; Halas N. J. Mesoscopic Au “meatball” particles. Adv. Mater., 2008, 20(4), 820-825. doi:10.1002/adma.200701293 [Baidu Scholar]
You H.; Ji Y.; Wang L.; Yang S.; Yang Z.; Fang J.; Song X.; Ding B. Interface synthesis of gold mesocrystals with highly roughened surfaces for surface-enhanced Raman spectroscopy. J. Mater. Chem., 2012, 22(5), 1998-2006. doi:10.1039/c1jm13211c [Baidu Scholar]
0
Views
60
Downloads
0
CSCD
Related Articles
Related Author
Related Institution