浏览全部资源
扫码关注微信
山西师范大学化学与材料科学学院 磁性分子与磁信息材料教育部重点实验室 太原 030031
Published:20 July 2023,
Published Online:12 January 2023,
Received:07 November 2022,
Accepted:01 December 2022
扫 描 看 全 文
王金增,梁瑞梅,裴雅儒等.可调控镧系配位聚合物荧光及温度传感性能研究[J].高分子学报,2023,54(07):1095-1102.
Wang Jin-zeng,Liang Rui-mei,Pei Ya-ru,et al.The Luminescence of Controllable Lanthanide-based Coordination Polymers and the Properties as Thermometer[J].ACTA POLYMERICA SINICA,2023,54(07):1095-1102.
王金增,梁瑞梅,裴雅儒等.可调控镧系配位聚合物荧光及温度传感性能研究[J].高分子学报,2023,54(07):1095-1102. DOI: 10.11777/j.issn1000-3304.2022.22375.
Wang Jin-zeng,Liang Rui-mei,Pei Ya-ru,et al.The Luminescence of Controllable Lanthanide-based Coordination Polymers and the Properties as Thermometer[J].ACTA POLYMERICA SINICA,2023,54(07):1095-1102. DOI: 10.11777/j.issn1000-3304.2022.22375.
通过2-羟基对苯二甲酸(H
2
hbdc)配体合成了2种不同结构的镧系配位聚合物(Ln
2
(hbdc)
3
(H
2
O)
8
·6H
2
O)
∞
(Ln-1)和(Ln
2
(hbdc)
3
(H
2
O)
8
·2H
2
O)
∞
(Ln-2),合成混掺杂TbEu-1,TbEu-2和GdTbEu-2 (90% Gd
3+
). 对其进行了荧光强度分析及变温荧光光谱的测定,荧光强度排序为GdTbEu-2
>
TbEu-2
>
TbEu-1,经过Gd
3+
稀释后的金属间能量转移效率为57%,明显低于未稀释的TbEu-2 67%. 廉价Gd
3+
的引入及结构变换,使GdTbEu-2在100~250 K之间实现温度传感,同未调控的TbEu-1相比,温控区间扩大了1倍,绝对灵敏度(
S
ab
)和相对灵敏度(
S
re
)分别提升了22倍和3倍,这主要是由于Gd
3+
稀释后金属间距大于1 nm,弱化了金属间能量传递作用及Ln-2较少的游离水分子热运动. 进一步合成了一系列Sm
2
x
Eu
2-2
x
-2 (0.1≤
x
≤0.9),呈现出可见和近红外发光,尤其是Sm
3+
在近红外区域呈现优异的光谱渐变. 这项工作为调控掺杂的荧光温度传感器及近红外温度传感器提供了一种思路和基础.
Two different structures lanthanide-based coordination polymers (Ln
2
(hbdc)
3
(H
2
O)
8
·6H
2
O)
∞
(Ln-1) and (Ln
2
(hbdc)
3
(H
2
O)
8
·2H
2
O)
∞
(Ln-2) have been synthesized by changing the adding order of reactants
and TbEu-1
TbEu-2 and GdTbEu-2 (90% Gd
3+
) were further synthesized. The luminance was analyzed and the temperature-dependent luminescence spectrum was measured. All the luminescent spectra were recorded at solid state. The luminance was ranked as GdTbEu-2
>
TbEu-2
>
TbEu-1. For TbEu-2
the value of intermetallic energy transfer efficiency is 67%
after the dilution of 90% Gd
3+
this value significantly decreased to 57%. The introduction of cheap Gd
3+
and the transformation of the structure enable GdTbEu-2 to achieve temperature sensing between 100 K and 250 K. Compared with unregulated TbEu-1
the range of temperature sensing was doubled
the absolute sensitivity (
S
ab
) and relative sensitivity (
S
re
) increased by 22 and 3 times
respectively. This phenomenon could be caused by the fact that
the intermetallic distance is larger than 1 nm after Gd
3+
dilution
which weakens the intermetallic energy transfer effect
and the less free water molecule thermal motion of structure 2. A series of Sm
2
x
Eu
2-2
x
-2 (0.1≤
x
≤0.9) were further synthesized
showing both visible and near-infrared luminescence
especially Sm
3+
displaying excellent spectral gradation in the near-infrared region. This work provides an idea and basis for regulating doping luminescence thermometer and near-infrared temperature sensors.
镧系配位聚合物荧光温度传感器近红外发光
Lanthanide-based coordination polymersLuminescenceThermometerNear infra-red emission
Wang X. D.; Wolfbeis O. S.; Meier R. J. Luminescent probes and sensors for temperature. Chem. Soc. Rev., 2013, 42(19), 7834-7869. doi:10.1039/c3cs60102ahttp://dx.doi.org/10.1039/c3cs60102a
Li L.; Zhu Y.; Zhou X.; Brites C. D.; Ananias D.; Lin Z.; Paz F. A. A.; Rocha J.; Huang W.; Carlos L. D. Visible‐light excited luminescent thermometer based on single lanthanide organic frameworks. Adv. Funct. Mater., 2016, 26(47), 8677-8684. doi:10.1002/adfm.201603179http://dx.doi.org/10.1002/adfm.201603179
Li H.; Chen J.; Chang X.; Xu Y.; Zhao G.; Zhu Y.; Li Y. A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range. J. Mater. Chem. A, 2021, 9(3), 1795-1802. doi:10.1039/d0ta10990hhttp://dx.doi.org/10.1039/d0ta10990h
Zhang C.; Kang G. G.; Wang J.; Wan S.; Dong C. H.; Pan Y. J.; Qu J. F. Photonic thermometer by silicon nitride microring resonator with milli-kelvin self-heating effect. Measurement, 2022, 188, 110494. doi:10.1016/j.measurement.2021.110494http://dx.doi.org/10.1016/j.measurement.2021.110494
Gu D.; Yang W.; Chen H.; Yang Y.; Qin X.; Chen L.; Wang S.; Pan Q. A stable mixed-valent uranium (V, VI) organic framework as a fluorescence thermometer. Inorg. Chem. Front., 2021, 8(14), 3514-3521. doi:10.1039/d1qi00580dhttp://dx.doi.org/10.1039/d1qi00580d
Childs P. R.; Greenwood J.; Long C. Review of temperature measurement. Rev. Sci. Instrum., 2000, 71(8), 2959-2978. doi:10.1063/1.1305516http://dx.doi.org/10.1063/1.1305516
Brites C. D.; Lima P. P.; Silva N. J.; Millán A.; Amaral V. S.; Palacio F.; Carlos L. D. Thermometry at the nanoscale. Nanoscale, 2012, 4(16), 4799-4829. doi:10.1039/c2nr30663hhttp://dx.doi.org/10.1039/c2nr30663h
Wang Q.; Liao M.; Lin Q.; Xiong M.; Mu Z.; Wu F. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials. J. Alloys Compd., 2021, 850, 156744. doi:10.1016/j.jallcom.2020.156744http://dx.doi.org/10.1016/j.jallcom.2020.156744
Wang J.; Zakrzewski J. J.; Heczko M.; Zychowicz M.; Nakagawa K.; Nakabayashi K.; Sieklucka B.; Chorazy S.; Ohkoshi S. I. Proton conductive luminescent thermometer based on near-infrared emissive {YbCo2} molecular nanomagnets. J. Am. Chem. Soc., 2020, 142(8), 3970-3979. doi:10.1021/jacs.9b13147http://dx.doi.org/10.1021/jacs.9b13147
Chi F.; Jiang B.; Zhao Z.; Chen Y.; Wei X.; Duan C.; Yin M.; Xu W. Multimodal temperature sensing using Zn2GeO4: Mn2+ phosphor as highly sensitive luminescent thermometer. Sensor. Actuat. B: Chem., 2019, 296, 126640. doi:10.1016/j.snb.2019.126640http://dx.doi.org/10.1016/j.snb.2019.126640
Feng T.; Ye Y.; Liu X.; Cui H.; Li Z.; Zhang Y.; Liang B.; Li H.; Chen B. A robust mixed‐lanthanide polyMOF membrane for ratiometric temperature sensing. Angew. Chem., 2020, 132(48), 21936-21941. doi:10.1002/ange.202009765http://dx.doi.org/10.1002/ange.202009765
Parker D.; Fradgley J. D.; Wong K. L. The design of responsive luminescent lanthanide probes and sensors. Chem. Soc. Rev., 2021. doi:10.1039/d1cs00310khttp://dx.doi.org/10.1039/d1cs00310k
da Rosa P. P. F.; Kitagawa Y.; Hasegawa Y. Luminescent lanthanide complex with seven-coordination geometry. Coord. Chem. Rev., 2020, 406, 213153. doi:10.1016/j.ccr.2019.213153http://dx.doi.org/10.1016/j.ccr.2019.213153
Wang Y.; Zhao G.; Chi H.; Yang S.; Niu Q.; Wu D.; Cao W.; Li T.; Ma H.; Wei Q. Self-luminescent lanthanide metal-organic frameworks as signal probes in electrochemiluminescence immunoassay. J. Am. Chem. Soc., 2020, 143(1), 504-512. doi:10.1021/jacs.0c12449http://dx.doi.org/10.1021/jacs.0c12449
Eliseeva S. V.; Bünzli J. C. G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev., 2010, 39(1), 189-227. doi:10.1039/b905604chttp://dx.doi.org/10.1039/b905604c
Lu Y.; Yan B. Lanthanide organic-inorganic hybrids based on functionalized metal-organic frameworks (MOFs) for a near-UV white LED. Chem. Commun., 2014, 50(97), 15443-15446. doi:10.1039/c4cc07852ghttp://dx.doi.org/10.1039/c4cc07852g
Li H.; Li Q.; Xu Z. Lanthanide cation encapsulated in a metal-organic framework as a white LED and selective naked-eye reversible HCl sensor. J. Mater. Chem. C, 2019, 7(10), 2880-2885. doi:10.1039/c8tc05956jhttp://dx.doi.org/10.1039/c8tc05956j
Wei C.; Ma L.; Wei H.; Liu Z.; Bian Z.; Huang C. Advances in luminescent lanthanide complexes and applications. Sci. China Technol. Sci., 2018, 61(9), 1265-1285. doi:10.1007/s11431-017-9212-7http://dx.doi.org/10.1007/s11431-017-9212-7
Liang T.; Guo Z.; He Y.; Wang Y.; Li C.; Li Z.; Liu Z. Cyanine‐doped lanthanide metal-organic frameworks for near‐infrared II bioimaging. Adv. Sci., 2022, 9(7), 2104561. doi:10.1002/advs.202104561http://dx.doi.org/10.1002/advs.202104561
Bünzli, J. C. G. Luminescence bioimaging with lanthanide complexes. In: Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials. West Sussex: John Wiley & Sons, 2014. 125-196. doi:10.1002/9781118682760.ch04http://dx.doi.org/10.1002/9781118682760.ch04
Ding M.; Dong B.; Lu Y.; Yang X.; Yuan Y.; Bai W.; Wu S.; Ji Z.; Lu C.; Zhang K. Energy manipulation in lanthanide‐doped core-shell nanoparticles for tunable dual-mode luminescence toward advanced anti-counterfeiting. Adv. Mater., 2020, 32(45), 2002121. doi:10.1002/adma.202002121http://dx.doi.org/10.1002/adma.202002121
Huang H.; Chen J.; Liu Y.; Lin J.; Wang S.; Huang F.; Chen D. Lanthanide‐doped core@ multishell nanoarchitectures: multimodal excitable upconverting/downshifting luminescence and high‐level anti‐counterfeiting. Small, 2020, 16(19), 2000708. doi:10.1002/smll.202000708http://dx.doi.org/10.1002/smll.202000708
Yang Q. Y.; Pan M.; Wei S. C.; Li K.; Du B. B.; Su C. Y. Linear dependence of photoluminescence in mixed Ln-MOFs for color tunability and barcode application. Inorg. Chem., 2015, 54(12), 5707-5716. doi:10.1021/acs.inorgchem.5b00271http://dx.doi.org/10.1021/acs.inorgchem.5b00271
Yan B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal-organic framework hybrids. Inorg. Chem. Front., 2021, 8(1), 201-233. doi:10.1039/d0qi01153chttp://dx.doi.org/10.1039/d0qi01153c
Wang L.; Chen Y. A reaction-triggered luminescent Ce4+/Tb3+ MOF probe for the detection of SO2 and its derivatives. Chem. Commun., 2020, 56(51), 6965-6968. doi:10.1039/c9cc09900jhttp://dx.doi.org/10.1039/c9cc09900j
Cui Y.; Xu H.; Yue Y.; Guo Z.; Yu J.; Chen Z.; Gao J.; Yang Y.; Qian G.; Chen B. A luminescent mixed-lanthanide metal-organic framework thermometer. J. Am. Chem. Soc., 2012, 134(9), 3979-3982. doi:10.1021/ja2108036http://dx.doi.org/10.1021/ja2108036
Yang X.; Zou H.; Sun X.; Sun T.; Guo C.; Fu Y.; Wu C. M. L.; Qiao X.; Wang F. One‐step synthesis of mixed lanthanide metal-organic framework films for sensitive temperature mapping. Adv. Opt. Mater., 2019, 7(19), 1900336. doi:10.1002/adom.201900336http://dx.doi.org/10.1002/adom.201900336
Zhao D.; Yue D.; Zhang L.; Jiang K.; Qian G. Cryogenic luminescent Tb/Eu-MOF thermometer based on a fluorine-modified tetracarboxylate ligand. Inorg. Chem., 2018, 57(20), 12596-12602. doi:10.1021/acs.inorgchem.8b01746http://dx.doi.org/10.1021/acs.inorgchem.8b01746
Guillou O.; Daiguebonne C.; Calvez G.; Bernot K. A long journey in lanthanide chemistry: from fundamental crystallogenesis studies to commercial anticounterfeiting taggants. Acc. Chem. Res., 2016, 49(5), 844-856. doi:10.1021/acs.accounts.6b00058http://dx.doi.org/10.1021/acs.accounts.6b00058
Wang J.; Suffren Y.; Daiguebonne C.; Freslon S.; Bernot K.; Calvez G.; Le Pollès L.; Roiland C.; Guillou O. Multi-emissive lanthanide-based coordinationpolymers for potential application as luminescent bar-codes. Inorg. Chem., 2019, 58(4), 2659-2668. doi:10.1021/acs.inorgchem.8b03277http://dx.doi.org/10.1021/acs.inorgchem.8b03277
Wang J.; Suffren Y.; Daiguebonne C.; Bernot K.; Calvez G.; Freslon S.; Guillou O. Lanthanide-based molecular alloys with hydroxyterephthalate: a versatile system. CrystEngComm, 2021, 23(1), 100-118. doi:10.1039/d0ce00947dhttp://dx.doi.org/10.1039/d0ce00947d
Piguet C.; Buenzli J. C. G.; Bernardinelli G.; Hopfgartner G.; Williams A. F. Self-assembly and photophysical properties of lanthanide dinuclear triple-helical complexes. J. Am. Chem. Soc., 1993, 115(18), 8197-8206. doi:10.1021/ja00071a032http://dx.doi.org/10.1021/ja00071a032
Abdallah A.; Daiguebonne C.; Suffren Y.; Rojo A.; Demange V.; Bernot K.; Calvez G.; Guillou O. Microcrystalline core-shell lanthanide-based coordination polymers for unprecedented luminescent properties. Inorg. Chem., 2019, 58(2), 1317-1329. doi:10.1021/acs.inorgchem.8b02815http://dx.doi.org/10.1021/acs.inorgchem.8b02815
Abdallah A.; Freslon S.; Fan X.; Rojo A.; Daiguebonne C.; Suffren Y.; Bernot K.; Calvez G.; Roisnel T.; Guillou O. Lanthanide-based coordination polymers with 1, 4-carboxyphenylboronic ligand: multiemissive compounds for multisensitive luminescent thermometric probes. Inorg. Chem., 2018, 58(1), 462-475. doi:10.1021/acs.inorgchem.8b02681http://dx.doi.org/10.1021/acs.inorgchem.8b02681
Yang Y.; Chen L.; Jiang F.; Yu M.; Wan X.; Zhang B.; Hong M. A family of doped lanthanide metal-organic frameworks for wide-range temperature sensing and tunable white light emission. J. Mater. Chem. C, 2017, 5(8), 1981-1989. doi:10.1039/c6tc05316ehttp://dx.doi.org/10.1039/c6tc05316e
Han Y. H.; Tian C. B.; Li Q. H.; Du S. W. Highly chemical and thermally stable luminescent EuxTb1-x MOF materials for broad-range pH and temperature sensors. J. Mater. Chem. C, 2014, 2(38), 8065-8070. doi:10.1039/c4tc01336khttp://dx.doi.org/10.1039/c4tc01336k
Li H.; Han W.; Lv R.; Zhai A.; Li X. L.; Gu W.; Liu X. Dual-function mixed-lanthanide metal-organic framework for ratiometric water detection in bioethanol and temperature sensing. Anal. Chem., 2019, 91(3), 2148-2154. doi:10.1021/acs.analchem.8b04690http://dx.doi.org/10.1021/acs.analchem.8b04690
Wang S.; Jiang J.; Lu Y.; Liu J.; Han X.; Zhao D.; Li C. Ratiometric fluorescence temperature sensing based on single-and dual-lanthanide metal-organic frameworks. J. Lumin., 2020, 226, 117418. doi:10.1016/j.jlumin.2020.117418http://dx.doi.org/10.1016/j.jlumin.2020.117418
van Swieten T. P.; Yu D.; Yu T.; Vonk S. J.; Suta M.; Zhang Q.; Meijerink A.; Rabouw F. T. A Ho3+‐based luminescent thermometer for sensitive sensing over a wide temperature range. Adv. Opt. Mater., 2021, 9(1), 2001518. doi:10.1002/adom.202001518http://dx.doi.org/10.1002/adom.202001518
Pointel Y.; Houard F.; Suffren Y.; Daiguebonne C.; Le Natur F.; Freslon S.; Calvez G.; Bernot K.; Guillou O. High luminance of heterolanthanide-based molecular alloys by phase-induction strategy. Inorg. Chem., 2020, 59(15), 11028-11040. doi:10.1021/acs.inorgchem.0c01513http://dx.doi.org/10.1021/acs.inorgchem.0c01513
0
Views
46
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution