浏览全部资源
扫码关注微信
1.江南大学机械工程学院 无锡 214122
2.中国科学院兰州化学物理研究所 兰州 730000
Yu Liu, E-mail: yu.liu@vip.163.com
Xiao-long Wang, E-mail: wwangxl@licp.cas.cn
Published:20 July 2023,
Published Online:24 February 2023,
Received:25 November 2022,
Accepted:18 January 2023
扫 描 看 全 文
夏栩婷,任俊,杨彧涵等.自扩散过程中聚二甲基硅氧烷印章微结构表面力学性能研究[J].高分子学报,2023,54(07):1113-1121.
Xia Xu-ting,Ren Jun,Yang Yu-han,et al.Research on Surface Mechanical Properties of Polydimethylsiloxane Stamp Microstructures in Self-diffusion Process[J].ACTA POLYMERICA SINICA,2023,54(07):1113-1121.
夏栩婷,任俊,杨彧涵等.自扩散过程中聚二甲基硅氧烷印章微结构表面力学性能研究[J].高分子学报,2023,54(07):1113-1121. DOI: 10.11777/j.issn1000-3304.2022.22379.
Xia Xu-ting,Ren Jun,Yang Yu-han,et al.Research on Surface Mechanical Properties of Polydimethylsiloxane Stamp Microstructures in Self-diffusion Process[J].ACTA POLYMERICA SINICA,2023,54(07):1113-1121. DOI: 10.11777/j.issn1000-3304.2022.22379.
为了探究微接触印刷时,有机溶剂在聚二甲基硅氧烷(PDMS)内部微纳孔隙中自扩散对PDMS印章表面微结构的影响,制备了一系列具有不同高宽比微结构、不同墨水含量以及不同交联剂比例的PDMS印章,并进一步揭示了高宽比、墨水自扩散程度以及交联剂比例对印章表面微结构的模量、黏附力和几何尺寸的影响. 该结果可用于作为制备具有较高结构稳定性和印刷精度的PDMS弹性印章的参考基础.
In micro-contact printing
the structural stability and shape accuracy of the elastomeric stamp are critical for structural printing with high resolution and precision. When printing alkanethiols on gold surfaces
the self-diffusion phenomenon of organic solvents occurring in the micro-nano pores inside polydimethylsiloxane (PDMS) during the ink dipping process tends to change the mechanical properties and geometry of the stamp
thus affecting the accuracy and effectiveness of the printed patterns. In order to investigate the effect of this self-diffusion phenomenon on the microstructure of the PDMS stamp surface
PDMS stamps with microstructure patterns of different aspect ratios were prepared by casting off on a lithographic silicon wafer template. PDMS stamps with different HDT mass fractions were prepared by immersing the PDMS stamps in 1-hexadecanethiol (HDT) and by controlling the time of self-diffusion of HDT inside PDMS
and based on optical microscopy
scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements
the effects of the self-diffusion process on the structural stability of the stamp microstructures
surface adhesion and the shape accuracy of the patterns. The results show that the self-diffusion of HDT causes a decrease in both the modulus and adhesion of the PDMS stamped microstructure
and the structural stability of the microstructure with an aspect ratio of 1:1 is relatively best. Secondly
the longer the time of self-diffusion
the higher the content of HDT inside the PDMS
the greater the decrease in the modulus and adhesion of the microstructure
and the higher the shape expansion of its pattern. In addition
the effect of curing agent content on the Young's modulus and adhesion force of PDMS stamp microstructures was investigated by varying the ratio of prepolymer to curing agent. The results can be used as a reference basis for the preparation of PDMS elastic stamps with high structural stability and printing accuracy.
微接触印刷自扩散聚二甲基硅氧烷原子力显微镜结构稳定性
Micro-contact printingSelf-diffusionPolydimethylsiloxaneAtomic force microscopyStructural stability
Qin D.; Xia Y. N.; Whitesides G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc., 2010, 5(3), 491-502. doi:10.1038/nprot.2009.234http://dx.doi.org/10.1038/nprot.2009.234
Balmer T. E.; Schmid H.; Stutz R.; Delamarche E.; Michel B.; Spencer N. D.; Wolf H. Diffusion of alkanethiols in PDMS and its implications on microcontact printing (μCP). Langmuir, 2005, 21(2), 622-632. doi:10.1021/la048273lhttp://dx.doi.org/10.1021/la048273l
Yoon J.; Lee S. M.; Kang D.; Meitl M. A.; Bower C. A.; Rogers J. A. Heterogeneously integrated optoelectronic devices enabled by micro-transfer printing. Adv. Opt. Mater., 2015, 3(10), 1313-1335. doi:10.1002/adom.201500365http://dx.doi.org/10.1002/adom.201500365
Austin M.; Chou S. Y. Fabrication of nanocontacts for molecular devices using nanoimprint lithography. J. Vac. Sci. Technol. B, 2002, 20(2), 665. doi:10.1116/1.1463068http://dx.doi.org/10.1116/1.1463068
Chen Y.; Lebib A.; Carcenac F.; Launois H.; Schmidt G.; Tormen M.; Müller G.; Molenkamp L. W.; Liebau M.; Huskens J.; Reinhoudl S. N. Microcontact printing and pattern transfer with a tri-layer processing. Microelectron. Eng., 2000, 53(1-4), 253-256. doi:10.1016/s0167-9317(00)00309-9http://dx.doi.org/10.1016/s0167-9317(00)00309-9
Perl A.; Reinhoudt D. N.; Huskens J. Microcontact printing: limitations and achievements. Adv. Mater., 2009, 21(22), 2257-2268. doi:10.1002/adma.200801864http://dx.doi.org/10.1002/adma.200801864
Yesildag C.; Ouyang Z. F.; Zhang Z. F.; Lensen M. C. Micro-patterning of PEG-based hydrogels with gold nanoparticles using a reactive micro-contact-printing approach. Front. Chem., 2019, 6, 667. doi:10.3389/fchem.2018.00667http://dx.doi.org/10.3389/fchem.2018.00667
Chen Z. T.; Sheleg G.; Shekhar H.; Tessler N. Structure-property relation in organic-metal oxide hybrid phototransistors. ACS Appl. Mater. Interfaces, 2020, 12(13), 15430-15438. doi:10.1021/acsami.9b22165http://dx.doi.org/10.1021/acsami.9b22165
Li H. Y.; Zhang H. N.; Luo W.; Yuan R.; Zhao Y. Q.; Huang J. N.; Yang X. Microcontact printing of gold nanoparticle at three-phase interface as flexible substrate for SERS detection of microRNA. Anal. Chim. Acta, 2022, 1229, 340380. doi:10.1016/j.aca.2022.340380http://dx.doi.org/10.1016/j.aca.2022.340380
Salimitari P.; Behroudj A.; Strehle S. Aligned deposition of bottom-up grown nanowires by two-directional pressure-controlled contact printing. Nanotechnology, 2022, 33(23), 235301. doi:10.1088/1361-6528/ac56f8http://dx.doi.org/10.1088/1361-6528/ac56f8
Bao C.; Wang Z. F.; Liu Y.; Zhang Y. N.; Nie H. Y.; Lau W. M.; Mei J. Mechanics of surface crosslinked poly(dimethyl siloxane) microstructure used for microcontact transfer printing. J. Appl. Polym. Sci., 2017, 134(31), 45166. doi:10.1002/app.45166http://dx.doi.org/10.1002/app.45166
Neupane S.; Losada-Pérez P.; Vivegnis S.; Mekhalif Z.; Delhalle J.; Bashir A.; Renner F. U. Two-step nanoscale approach for well-defined complex alkanethiol films on Au surfaces. Langmuir, 2018, 34(1), 66-72. doi:10.1021/acs.langmuir.7b02760http://dx.doi.org/10.1021/acs.langmuir.7b02760
Belarbi Z.; Vu T. N.; Farelas F.; Young D.; Singer M.; Nešić S. Thiols as volatile corrosion inhibitors for top-of-the-line corrosion. Corrosion 2017, 73(7), 892-899. doi:10.5006/2385http://dx.doi.org/10.5006/2385
Torabi S.; Cai Z. Y.; Pham J. T.; Trinkle C. A. Hydrophobic surface patterning with soft, wax-infused micro-stamps. J. Colloid Interface Sci., 2022, 615, 494-500. doi:10.1016/j.jcis.2022.01.118http://dx.doi.org/10.1016/j.jcis.2022.01.118
崔婧怡, 马莒生, 王广龙. 微接触印刷术: 制备纳米器件的新技术. 电子元件与材料, 2005, 24(8), 56-59. doi:10.3969/j.issn.1001-2028.2005.08.019http://dx.doi.org/10.3969/j.issn.1001-2028.2005.08.019
邓文礼, 杨林静, 王琛, 白春礼. 烷基硫醇分子自组装研究进展. 科学通报, 1998, 43(5), 449-457. doi:10.3321/j.issn:0023-074X.1998.05.001http://dx.doi.org/10.3321/j.issn:0023-074X.1998.05.001
Shah S. A.; Pikalov A. A.; Baldelli S. ChemSpecNet: a neural network for chemical analysis of sum frequency generation spectroscopic imaging. Opt. Commun., 2022, 507, 127691. doi:10.1016/j.optcom.2021.127691http://dx.doi.org/10.1016/j.optcom.2021.127691
Alom Ruiz S.; Chen C. S. Microcontact printing: a tool to pattern. Soft Matter, 2007, 3(2), 168-177. doi:10.1039/b613349ehttp://dx.doi.org/10.1039/b613349e
Schmid H.; Michel B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules, 2000, 33(8), 3042-3049. doi:10.1021/ma982034lhttp://dx.doi.org/10.1021/ma982034l
Odom T. W.; Love J. C.; Wolfe D. B.; Paul K. E.; Whitesides G. M. Improved pattern transfer in soft lithography using composite stamps. Langmuir, 2002, 18(13), 5314-5320. doi:10.1021/la020169lhttp://dx.doi.org/10.1021/la020169l
Yang S. Y.; Carlson A.; Cheng H. Y.; Yu Q. M.; Ahmed N.; Wu J.; Kim S.; Sitti M.; Ferreira P. M.; Huang Y. G.; Rogers J. A. Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications. Adv. Mater., 2012, 24(16), 2117-2122. doi:10.1002/adma.201104975http://dx.doi.org/10.1002/adma.201104975
Zhou F.; Wang C.; Dong B. Q.; Chen X. F.; Zhang Z.; Sun C. Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism. Opt. Express, 2016, 24(6), 6367-6380. doi:10.1364/oe.24.006367http://dx.doi.org/10.1364/oe.24.006367
Dos Santos Ferreira O.; Gelinck E.; de Graaf D.; Fischer H. Adhesion experiments using an AFM—parameters of influence. Appl. Surf. Sci., 2010, 257(1), 48-55. doi:10.1016/j.apsusc.2010.06.031http://dx.doi.org/10.1016/j.apsusc.2010.06.031
Tang B.; Aifantis K. E.; Ngan A. H. W. Elastic modulus of nanostructured polymer surfaces. Mater. Lett., 2012, 67(1), 237-240. doi:10.1016/j.matlet.2011.08.107http://dx.doi.org/10.1016/j.matlet.2011.08.107
Koufaki N.; Ranella A.; Aifantis K. E.; Barberoglou M.; Psycharakis S.; Fotakis C.; Stratakis E. Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers. Biofabrication, 2011, 3(4), 045004. doi:10.1088/1758-5082/3/4/045004http://dx.doi.org/10.1088/1758-5082/3/4/045004
0
Views
38
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution