浏览全部资源
扫码关注微信
1.稀土新材料教育部工程研究中心 清华大学化学系 北京 100084
2.中国人民大学化学系 北京 100872
3.中国科学院化学研究所 中国科学院胶体、界面与化学热力学重点实验室 北京 100190
4.中国科学院大学 北京 100149
Published:20 July 2023,
Published Online:18 January 2023,
Received:10 November 2022,
Accepted:08 December 2022
扫 描 看 全 文
潘玙璠,丁雨樵,董原辰等.DNA超分子水凝胶的构筑、功能化与生物医学应用[J].高分子学报,2023,54(07):1012-1027.
Pan Yu-fan,Ding Yu-qiao,Dong Yuan-chen,et al.Construction, Functionalization and Biomedical Application of DNA Supramolecular Hydrogels[J].ACTA POLYMERICA SINICA,2023,54(07):1012-1027.
潘玙璠,丁雨樵,董原辰等.DNA超分子水凝胶的构筑、功能化与生物医学应用[J].高分子学报,2023,54(07):1012-1027. DOI: 10.11777/j.issn1000-3304.2022.22380.
Pan Yu-fan,Ding Yu-qiao,Dong Yuan-chen,et al.Construction, Functionalization and Biomedical Application of DNA Supramolecular Hydrogels[J].ACTA POLYMERICA SINICA,2023,54(07):1012-1027. DOI: 10.11777/j.issn1000-3304.2022.22380.
水凝胶具有与细胞外基质相似的组成与结构,是药物递送、组织工程以及体外细胞培养等生物医学领域重要的一类材料. 实现组成明确、生物相容、生物降解并且可功能化的水凝胶材料的构筑是高分子领域发展的重要挑战. DNA作为一种天然的生物大分子,天然具有明确的化学组成、可设计的序列以及独特的结构刚性,是构筑超分子水凝胶的优良材料. 本文回顾了DNA超分子水凝胶领域近年来的发展,主要介绍了纯/杂化DNA超分子水凝胶的构筑,总结了基于双链互补配对或物理缠结的纯DNA超分子水凝胶的构筑方法,讨论了物理与化学掺杂在杂化DNA超分子水凝胶构筑中的重要影响;系统介绍了DNA超分子水凝胶卓越的通透性、可调的力学强度以及动态的性质等物理特性,提出了DNA的刚性与动态性决定水凝胶物理性质的分子机制;总结了DNA超分子水凝胶的功能化策略,重点介绍了序列设计、化学修饰以及网络复合等方法;介绍了DNA超分子水凝胶在细胞三维培养与打印、组织工程以及免疫治疗和药物递送等生物医学领域的应用;最后,讨论了DNA超分子水凝胶领域发展面临的一些挑战与前景,为其未来应用前景提供新思路.
Due to the similarity to extracellular matrix
hydrogels have been widely used in biomedical field such as drug delivery
tissue engineering and
in vitro
cell culture. Deoxyribonucleic acid (DNA) is known for the clear chemical composition
designable sequence and unique structural rigidity
which makes DNA an ideal material for construction of hydrogels. Based on our research
this review summarizes recent developments in DNA supramolecular hydrogels. Firstly
the construction strategies including the pure and hybrid DNA supramolecular hydrogels are introduced. While the construction of pure DNA supramolecular hydrogels is mainly based on base pairing or physical entanglement
covalent or non-covalent doping is also demonstrated to play important roles in preparing the hybrid hydrogels. Then
the physical properties of the DNA supramolecular hydrogels are discussed
such as the excellent permeability
tunable mechanical strength and dynamic properties. Next
the functionalization strategies are also summarized
including sequence design
chemical modification and network interpenetration. Furthermore
the applications of DNA supramolecular hydrogels in biomedicine are introduced
focusing on three-dimensional cell culture and printing
tissue engineering
immunotherapy and drug delivery. Finally
some challenges and future perspectives in the development of DNA supramolecular hydrogels are discussed. It is expected that with the flourishing development
DNA supramolecular hydrogels will have more applications.
DNA超分子水凝胶功能化生物医学应用
DNA supramolecular hydrogelFunctionalizationBiomedical application
Yang C. H.; Suo Z. G. Hydrogel ionotronics. Nat. Rev. Mater., 2018, 3(6), 125-142. doi:10.1038/s41578-018-0018-7http://dx.doi.org/10.1038/s41578-018-0018-7
Appel E. A.; del Barrio J.; Loh X. J.; Scherman O. A. Supramolecular polymeric hydrogels. Chem. Soc. Rev., 2012, 41(18), 6195-6214. doi:10.1039/c2cs35264hhttp://dx.doi.org/10.1039/c2cs35264h
Plamper F. A.; Richtering W. Functional microgels and microgel systems. Acc. Chem. Res., 2017, 50(2), 131-140. doi:10.1021/acs.accounts.6b00544http://dx.doi.org/10.1021/acs.accounts.6b00544
Tam R. Y.; Smith L. J.; Shoichet M. S. Engineering cellular microenvironments with photo- and enzymatically responsive hydrogels: Toward biomimetic 3D cell culture models. Acc. Chem. Res., 2017, 50(4), 703-713. doi:10.1021/acs.accounts.6b00543http://dx.doi.org/10.1021/acs.accounts.6b00543
Lee K. Y.; Mooney D. J. Hydrogels for tissue engineering. Chem. Rev., 2001, 101(7), 1869-1879. doi:10.1021/cr000108xhttp://dx.doi.org/10.1021/cr000108x
Drury J. L.; Mooney D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003, 24(24), 4337-4351. doi:10.1016/S0142-9612(03)00340-5http://dx.doi.org/10.1016/S0142-9612(03)00340-5
Nagahara, S; Matsuda, T. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym. Gels Networks, 1996, 4(2), 111-127. doi:10.1016/0966-7822(96)00001-9http://dx.doi.org/10.1016/0966-7822(96)00001-9
Um S. H.; Lee J. B.; Park N.; Kwon S. Y.; Umbach C. C.; Luo D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater., 2006, 5(10), 797-801. doi:10.1038/nmat1741http://dx.doi.org/10.1038/nmat1741
Chen E. J.; Xing Y. Z.; Chen P.; Yang Y.; Sun Y. W.; Zhou D. J.; Xu L. J.; Fan Q. H.; Liu D. S. A pH-trigged, fast-responding DNA hydrogel. Angew. Chem. Int. Ed., 2009, 48(41), 7660-7663. doi:10.1002/anie.200902538http://dx.doi.org/10.1002/anie.200902538
Shao Y.; Jia H. Y.; Cao T. Y.; Liu D. S. Supramolecular hydrogels based on DNA self-assembly. Acc. Chem. Res., 2017, 50(4), 659-668. doi:10.1021/acs.accounts.6b00524http://dx.doi.org/10.1021/acs.accounts.6b00524
Xing Y. Z.; Chen E. J.; Yang Y.; Chen P.; Zhao T.; Sun Y. W.; Yang Z. Q.; Liu D. S. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv. Mater., 2011, 23(9), 1117-1121. doi:10.1002/adma.201003343http://dx.doi.org/10.1002/adma.201003343
Jiang H. L.; Pan V.; Vivek S.; Weeks E. R.; Ke Y. G. Programmable DNA hydrogels assembled from multidomain DNA strands. Chembiochem, 2016, 17(12), 1156-1162. doi:10.1002/cbic.201500686http://dx.doi.org/10.1002/cbic.201500686
史杰中, 贾昊旸, 刘冬生. 单根DNA短链构筑pH响应超分子水凝胶. 高分子学报, 2017, (8), 135-142. doi:10.11777/j.issn1000-3304.2017.16278http://dx.doi.org/10.11777/j.issn1000-3304.2017.16278
Shi J. Z.; Zhu C. Y.; Li Q.; Li Y. J.; Chen L. X.; Yang B.; Xu J. F.; Dong Y. C.; Mao C. D.; Liu D. S. Kinetically interlocking multiple-units polymerization of DNA double crossover and its application in hydrogel formation. Macromol. Rapid Commun., 2021, 42(14), 2100182. doi:10.1002/marc.202100182http://dx.doi.org/10.1002/marc.202100182
Wang J. B.; Chao J.; Liu H. J.; Su S.; Wang L. H.; Huang W.; Willner I.; Fan C. H. Clamped hybridization chain reactions for the self-assembly of patterned DNA hydrogels. Angew. Chem. Int. Ed., 2017, 56(8), 2171-2175. doi:10.1002/anie.201610125http://dx.doi.org/10.1002/anie.201610125
Li Y. J.; Chen J.; Dong Y. C.; Liu H. J.; Liu D. S. Construction of pH-triggered DNA hydrogels based on hybridization chain reactions. Chem. Res. Chin. Univ., 2020, 36(2), 243-246. doi:10.1007/s40242-019-0034-1http://dx.doi.org/10.1007/s40242-019-0034-1
Lee J. B.; Peng S. M.; Yang D. Y.; Roh Y. H.; Funabashi H.; Pakr N.; Rice E. J.; Chen L. W.; Long R.; Wu M. M.; Luo D. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol., 2012, 7(12), 816-820. doi:10.1038/nnano.2012.211http://dx.doi.org/10.1038/nnano.2012.211
Geng J. H.; Yao C.; Kou X. H.; Tang J. P.; Luo D.; Yang D. Y. A fluorescent biofunctional DNA hydrogel prepared by enzymatic polymerization. Adv. Healthc. Mater., 2018, 7(5), 1700998. doi:10.1002/adhm.201700998http://dx.doi.org/10.1002/adhm.201700998
Nöll T.; Schönherr H.; Wesner D.; Schopferer M.; Paululat T.; Nöll G. Construction of three-dimensional DNA hydrogels from linear building blocks. Angew. Chem. Int. Ed., 2014, 53(32), 8328-8332. doi:10.1002/anie.201402497http://dx.doi.org/10.1002/anie.201402497
Jia H. Y.; Shi J. Z.; Shao Y.; Liu D. S. DNA hydrogels formed of bended DNA scaffolds and properties study. Chinese J. Polym. Sci., 2017, 35(10), 1307-1314. doi:10.1007/s10118-017-1978-6http://dx.doi.org/10.1007/s10118-017-1978-6
Lin D. C.; Yurke B.; Langrana. N. A. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng., 2004, 126(1), 104-110. doi:10.1115/1.1645529http://dx.doi.org/10.1115/1.1645529
Chen P.; Li C.; Liu D. S.; Li Z. B. DNA-grafted polypeptide molecular bottlebrush prepared via ring-opening polymerization and click chemistry. Macromolecules, 2012, 45(24), 9579-9584. doi:10.1021/ma302233mhttp://dx.doi.org/10.1021/ma302233m
Li C.; Chen P.; Shao Y.; Zhou X.; Wu Y. Z.; Yang Z. Q.; Li Z. B.; Weil T.; Liu D. S. A writable polypeptide-DNA hydrogel with rationally designed multi-modification sites. Small, 2015, 11(9-10), 1138-1143. doi:10.1002/smll.201401906http://dx.doi.org/10.1002/smll.201401906
Li C.; Faulkner-Jones A.; Dun A. R.; Jin J.; Chen P.; Xing Y. Z.; Yang Z. Q.; Li Z. B.; Shu W. M.; Liu D. S.; Duncan R. R. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew. Chem. Int. Ed., 2015, 54(13), 3957-3961. doi:10.1002/anie.201411383http://dx.doi.org/10.1002/anie.201411383
Wu Y. Z.; Li C.; Boldt F.; Wang Y. R.; Kuan S. L.; Tran T. T.; Mikhalevich V.; Fortsch C.; Barth H.; Yang Z. Q.; Liu D. S.; Weil T. Programmable protein-DNA hybrid hydrogels for the immobilization and release of functional proteins. Chem. Commun., 2014, 50(93), 14620-14622. doi:10.1039/c4cc07144ahttp://dx.doi.org/10.1039/c4cc07144a
Chen E. J.; Li Y. L.; Yang Z. Q.; Deng Z. X.; Liu D. S. DNA-SWNT hybrid hydrogel. Chem. Commun., 2011, 47(19), 5545-5547. doi:10.1039/c1cc11028dhttp://dx.doi.org/10.1039/c1cc11028d
Ma X. Z.; Yang Z. Q.; Wang Y. J.; Zhang G. L.; Shao Y.; Jia H. Y.; Cao T. Y.; Wang R.; Liu D. S. Remote controlling DNA hydrogel by magnetic field. ACS Appl. Mater. Interfaces, 2017, 9(3), 1995-2000. doi:10.1021/acsami.6b12327http://dx.doi.org/10.1021/acsami.6b12327
Song J.; Im K.; Hwang S.; Hur J.; Nam J.; Aho G. A.; Hwang S.; Kim S.; Park N. DNA hydrogel delivery vehicle for light-triggered and synergistic cancer therapy. Nanoscale, 2015, 7(21), 9433-9437. doi:10.1039/c5nr00858ahttp://dx.doi.org/10.1039/c5nr00858a
Zhang L. B.; Jean S. R.; Ahmed S.; Aldridge P. M.; Li X. Y.; Fan F. J.; Sargent E. H.; Kelley S. O. Multifunctional quantum dot DNA hydrogels. Nat. Commun., 2017, 8, 381. doi:10.1038/s41467-017-00298-whttp://dx.doi.org/10.1038/s41467-017-00298-w
Tang H. W.; Duan X. R.; Feng X. L.; Liu L. B.; Wang S.; Li Y. L.; Zhu D. B. Fluorescent DNA-poly(phenylenevinylene) hybrid hydrogels for monitoring drug release. Chem. Commun., 2009, 14(6), 641-643. doi:10.1039/b817788khttp://dx.doi.org/10.1039/b817788k
Xu Y. X.; Wu Q.; Sun Y. Q.; Bai H.; Shi G. Q. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano, 2010, 4(12): 7358-7362. doi:10.1021/nn1027104http://dx.doi.org/10.1021/nn1027104
Han J. P.; Guo Y. F.; Wang H.; Zhng, K, Y.; Yang, D. Y. Sustainable bioplastic made from biomass DNA and ionomers. J. Am. Chem. Soc., 2021, 143(46), 19486-19497. doi:10.1021/jacs.1c08888http://dx.doi.org/10.1021/jacs.1c08888
张希. 高通透超分子水凝胶: 开拓组织再生新思路. 高分子学报, 2022, 53(1), 1-3. doi:10.11777/j.issn1000-3304.2022.22n10http://dx.doi.org/10.11777/j.issn1000-3304.2022.22n10
Smith S. B.; Cui Y. J.; Bustamante C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science, 1996, 271(5250), 795-799. doi:10.1126/science.271.5250.795http://dx.doi.org/10.1126/science.271.5250.795
Baumann C. G.; Smith S. B.; Bloomfield V. A.; Bustamante C. Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. U. S. A., 1997, 94(12), 6185-6190. doi:10.1073/pnas.94.12.6185http://dx.doi.org/10.1073/pnas.94.12.6185
Dai X. B.; Zhu Z. C.; Li Y. J.; Yang B.; Xu J. F.; Dong Y. C.; Zhou X.; Yan L. T.; Liu D. S. "Shutter" effects enhance protein diffusion in dynamic and rigid molecular networks. J. Am. Chem. Soc., 2022, 144(41), 19017-19025. doi:10.1021/jacs.2c07830http://dx.doi.org/10.1021/jacs.2c07830
Jin J.; Xing Y. Z.; Xi Y. L.; Liu X. L.; Zhou T.; Ma X. X.; Yang Z. Q.; Wang S. T.; Liu D. S. A triggered DNA hydrogel cover to envelop and release single cells. Adv. Mater., 2013, 25(34), 4714-4717. doi:10.1002/adma.201301175http://dx.doi.org/10.1002/adma.201301175
Pan Y. F.; Yang B.; Xu R.; Li X.; Dong Y. C.; Liu D. S. Rigidity-dependent formation process of DNA supramolecular hydrogels. NPG Asia Mater. 2022, 14, 92. doi:10.1038/s41427-022-00445-whttp://dx.doi.org/10.1038/s41427-022-00445-w
王文星, 柳华杰, 王一丁, 杨洋, 刘冬生. 圆二色谱法研究碱基错配对G-quadruplex稳定性的影响. 高分子学报, 2018, (1), 55-61.
Li C.; Zhou X.; Shao Y.; Chen P.; Xing Y. Z.; Yang Z. Q.; Li Z. B.; Liu D. S. A supramolecular hydrogel with identical cross-linking point density but distinctive rheological properties. Mater. Chem. Front., 2017, 1(4), 654-659. doi:10.1039/c6qm00176ahttp://dx.doi.org/10.1039/c6qm00176a
Li Y. J.; Ding Y. Q.; Yang B.; Cao T. Y.; Xu J. F.; Dong Y. C.; Chen Q.; Xu L. J.; Liu D. S. Reinforcing DNA supramolecular hydrogel with polymeric multiple-unit linker. CCS Chem., 2022, DOI: 10.31635/ccschem.022.202101523.http://dx.doi.org/10.31635/ccschem.022.202101523.
Yang B.; Zhao Z. H.; Pan Y. F.; Xie J. Y.; Zhou B. N.; Li Y. J.; Dong Y. C.; Liu D. S. Shear-thinning and designable responsive supramolecular DNA hydrogels based on chemically branched DNA. ACS Appl. Mater. Interfaces, 2021, 13(41), 48414-48422. doi:10.1021/acsami.1c15494http://dx.doi.org/10.1021/acsami.1c15494
Dong Y. C.; Yang Z. Q.; Liu D. S. DNA nanotechnology based on i-motif structures. Acc. Chem. Res., 2014, 47(6), 1853-1860. doi:10.1021/ar500073ahttp://dx.doi.org/10.1021/ar500073a
Ma H. T.; Liu J. P.; Ali M. M.; Mahmood M. A. I.; Labanieh L.; Lu M. R.; Iqbal S. M.; Zhang Q.; Zhao W. A.; Wan Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem. Soc. Rev., 2015, 44(5): 1240-1256. doi:10.1039/c4cs00357hhttp://dx.doi.org/10.1039/c4cs00357h
Willner I.; Shlyahovsky B.; Zayats M.; Willner B. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev., 2008, 37(6), 1153-1165. doi:10.1039/b718428jhttp://dx.doi.org/10.1039/b718428j
Zhou X.; Li C.; Shao Y.; Chen C.; Yang Z. Q.; Liu D. S. Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor. Chem. Commun., 2016, 52(70), 10668-10671. doi:10.1039/c6cc04724fhttp://dx.doi.org/10.1039/c6cc04724f
Liu H. J.; Liu D. S. DNA nanomachines and their functional evolution. Chem. Commun., 2009, (19), 2625-2636. doi:10.1039/b822719ehttp://dx.doi.org/10.1039/b822719e
Liu D. S.; Balasubramanian S. A proton-fuelled DNA nanomachine. Angew. Chem. Int. Ed., 2003, 42(46), 5734-5736. doi:10.1002/anie.200352402http://dx.doi.org/10.1002/anie.200352402
Shu W. M.; Liu D. S.; Watari M.; Riener C. K.; Strunz T.; Welland M. E.; Balasubramanian S.; McKendry R. A. DNA molecular motor driven micromechanical cantilever arrays. J. Am. Chem. Soc., 2005, 127(48), 17054-17060. doi:10.1021/ja0554514http://dx.doi.org/10.1021/ja0554514
Xu Y.; Chen H.; Qu Y. J.; Efremov A. K.; Li M.; Ouyang Z. C.; Liu D. S.; Yan J. Mechano-chemical selections of two competitive unfolding pathways of a single DNA i-motif. Chin. Phys. B, 2014, 23(6), 068702. doi:10.1088/1674-1056/23/6/068702http://dx.doi.org/10.1088/1674-1056/23/6/068702
Liu H. Y.; Cao T. Y.; Xu Y.; Dong Y. C.; Liu D. S. Tuning the mechanical properties of a DNA hydrogel in three phases based on ATP aptamer. Int. J. Mol. Sci., 2018, 19(6), 1633. doi:10.3390/ijms19061633http://dx.doi.org/10.3390/ijms19061633
邵昱, 李闯, 周旭, 陈平, 杨忠强, 李志波, 刘冬生. 基于G-四联体的聚多肽-DNA 水凝胶响应性研究. 化学学报, 2015, (73), 815-818.
Zhu Z.; Wu C. C.; Liu H. P.; Zou Y.; Zhang X. L.; Kang H. Z.; Yang C. J.; Tan W. H. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew. Chem. Int. Ed., 2010, 49(6), 1052-1056. doi:10.1002/anie.200905570http://dx.doi.org/10.1002/anie.200905570
Yin B. C.; Ye B. C.; Wang H.; Zhu Z.; Tan W. H. Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem. Commun., 2012, 48(9), 1248-1250. doi:10.1039/c1cc15639jhttp://dx.doi.org/10.1039/c1cc15639j
Dave N.; Chan M. Y.; Huang P. J. J.; Smith B. D.; Liu J. W. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury (Ⅱ) detection and removal in water. J. Am. Chem. Soc., 2010, 132(36), 12668-12673. doi:10.1021/ja106098jhttp://dx.doi.org/10.1021/ja106098j
Huang Y. S.; Ma Y. L.; Chen Y. H.; Wu X. M.; Fang L. T.; Zhu Z.; Yang C. J. Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead. Anal. Chem., 2014, 86(22), 11434-11439. doi:10.1021/ac503540qhttp://dx.doi.org/10.1021/ac503540q
Shi J. Z.; Shi Z. W.; Dong Y. C.; Wu F.; Liu D. S. Responsive DNA-based supramolecular hydrogels. ACS Appl. Bio. Mater., 2020, 3(5), 2827-2837. doi:10.1021/acsabm.0c00081http://dx.doi.org/10.1021/acsabm.0c00081
杨勃, 孙立梅, 潘玙璠, 董原辰, 孙亚伟, 刘冬生. 基于光敏性胸腺嘧啶脱氧核苷亚膦酰胺单体的光响应DNA水凝胶. 高分子学报, 2021, 52(8), 996-1005. doi:10.11777/j.issn1000-3304.2021.21053http://dx.doi.org/10.11777/j.issn1000-3304.2021.21053
Peng L.; You M. X.; Yuan Q.; Wu C. C.; Han D.; Chen Y.; Zhong Z. H.; Xue J. G.; Tan W. H. Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. J. Am. Chem. Soc., 2012, 134(29), 12302-12307. doi:10.1021/ja305109nhttp://dx.doi.org/10.1021/ja305109n
Kang H. Z.; Liu H. P.; Zhang X. L.; Yan J. L.; Zhu Z.; Peng L.; Yang H. H.; Kim Y.; Tan W. H. Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir, 2011, 27(1), 399-408. doi:10.1021/la1037553http://dx.doi.org/10.1021/la1037553
Wu F.; Zhao Z. Y.; Chen C.; Cao T. Y.; Li C.; Shao Y.; Zhang Y. Y.; Qiu D.; Shi Q.; Fan Q. H.; Liu D. S. Self-collapsing of single molecular poly-propylene oxide (PPO) in a 3D DNA network. Small, 2018, 14(10), 1703426. doi:10.1002/smll.201703426http://dx.doi.org/10.1002/smll.201703426
Li J.; Zheng C.; Cansiz S.; Wu C. C.; Xu J. H.; Cui C.; Liu Y.; Hou W. J.; Wang Y. Y.; Zhang L. Q.; Tang I. t.; Yang H. H.; Tan W. H. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. J. Am. Chem. Soc., 2015, 137(4), 1412-1415. doi:10.1021/ja512293fhttp://dx.doi.org/10.1021/ja512293f
Nie P.; Bai Y. F.; Mei H. Synthetic life with alternative nucleic acids as genetic materials. Molecules, 2020, 25(15), 3483. doi:10.3390/molecules25153483http://dx.doi.org/10.3390/molecules25153483
Yang B.; Zhou B. N.; Li C. F.; Li X. W.; Shi Z. W.; Li Y. X.; Zhu C. Y.; Li X.; Hua Y.; Pan Y. F.; He J.; Cao T. Y.; Sun Y. W.; Liu W. L.; Ge M.; Yang Y. R.; Dong Y. C.; Liu D. S. A biostable L-DNA hydrogel with improved stability for biomedical applications. Angew. Chem. Int. Ed., 2022, 61(30), 202202520. doi:10.1002/anie.202202520http://dx.doi.org/10.1002/anie.202202520
Li C.; Rowland M. J.; Shao Y.; Cao T. Y.; Chen C.; Jia H. Y.; Zhou X.; Yang Z. Q.; Scherman O. A.; Liu D. S. Responsive double network hydrogels of interpenetrating DNA and CB[8] host-guest supramolecular systems. Adv. Mater., 2015, 27(21), 3298-3304. doi:10.1002/adma.201501102http://dx.doi.org/10.1002/adma.201501102
Cao T. Y.; Jia H. Y.; Dong Y. C.; Gui S. B.; Liu D. S. In situ formation of covalent second network in a DNA supramolecular hydrogel and its application for 3D cell imaging. ACS Appl. Mater. Interfaces, 2020, 12(4), 4185-4192. doi:10.1021/acsami.9b11534http://dx.doi.org/10.1021/acsami.9b11534
Wang Y. J.; Shao Y.; Ma X. Z.; Zhou B. N.; Faulkner-Jones A.; Shu W. M.; Liu D. S. Constructing tissuelike complex structures using cell-laden DNA hydrogel bricks. ACS Appl. Mater. Interfaces, 2017, 9(14), 12311-12315. doi:10.1021/acsami.7b01604http://dx.doi.org/10.1021/acsami.7b01604
Shao Y.; Sun Z. Y.; Wang Y. J.; Zhang B. D.; Liu D. S.; Li Y. M. Designable immune therapeutical vaccine system based on DNA supramolecular hydrogels. ACS Appl. Mater. Interfaces, 2018, 10(11), 9310-9314. doi:10.1021/acsami.8b00312http://dx.doi.org/10.1021/acsami.8b00312
Yuan T. Y.; Shao Y.; Zhou X.; Liu Q.; Zhu Z. C.; Zhou B. N.; Dong Y. C.; Stephanopoulos N.; Gui S. B.; Yan H.; Liu D. S. Highly permeable DNA supramolecular hydrogel promotes neurogenesis and functional recovery after completely transected spinal cord injury. Adv. Mater., 2021, 33(35), 2102428. doi:10.1002/adma.202102428http://dx.doi.org/10.1002/adma.202102428
Jin Y.; Li Y. J.; Song S. J.; Ding Y. Q.; Dong Y. C.; Lu Y.; Liu D. S. Zhang, C. DNA supramolecular hydrogel as a biocompatible artificial vitreous substitute. Adv. Mater. Interfaces, 2022, 9(5), 2101321. doi:10.1002/admi.202101321http://dx.doi.org/10.1002/admi.202101321
Yan X.; Yang B.; Chen Y. R.; Song Y. F.; Ye J.; Pan Y. F.; Zhou B. N.; Wang Y. Q.; Mao F. B.; Dong Y. C.; Liu D. S.; Yu J. K. Anti-friction MSCs delivery system improves the therapy for severe osteoarthritis. Adv. Mater., 2021, 33(52), 2104758. doi:10.1002/adma.202104758http://dx.doi.org/10.1002/adma.202104758
Klinman D. M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol., 2004, 4(4), 249-258. doi:10.1038/nri1329http://dx.doi.org/10.1038/nri1329
Nishikawa M.; Mizuno Y.; Mohri K.; Matsuoka N.; Rattanakiat S.; Takahashi Y.; Funabashi H.; Luo D.; Takakura Y. Biodegradable CpG DNA hydrogels for sustained delivery of doxorubicin and immunostimulatory signals in tumor-bearing mice. Biomaterials, 2011, 32(2), 488-494. doi:10.1016/j.biomaterials.2010.09.013http://dx.doi.org/10.1016/j.biomaterials.2010.09.013
Nishikawa M.; Ogawa K.; Umeki Y.; Mohri K.; Kawasaki Y.; Watanabe H.; Takahashi N.; Kusuki E.; Takahashi R.; Takahashi Y.; Takakura Y. Injectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen delivery. J. Control. Release, 2014, 180, 25-32. doi:10.1016/j.jconrel.2014.02.001http://dx.doi.org/10.1016/j.jconrel.2014.02.001
Lee J.; Le Q. V.; Yang G.; Oh Y. K. Cas9-edited immune checkpoint blockade PD-1 DNA polyaptamer hydrogel for cancer immunotherapy. Biomaterials, 2019, 218, 119359. doi:10.1016/j.biomaterials.2019.119359http://dx.doi.org/10.1016/j.biomaterials.2019.119359
Gacanin J.; Kovtun A.; Fischer S.; Schwager V.; Quambusch J.; Kuan S. L.; Liu W. N.; Boldt F.; Li C.; Yang Z. Q.; Liu D. S.; Wu Y. Z.; Weil T.; Barth H.; Ignatius A. Spatiotemporally controlled release of Rho-inhibiting C3 toxin from a protein-DNA hybrid hydrogel for targeted inhibition of osteoclast formation and activity. Adv. Healthc. Mater., 2017, 6(21), 1700392. doi:10.1002/adhm.201700392http://dx.doi.org/10.1002/adhm.201700392
Lyu D. Y.; Chen S. S.; Guo W. W. Liposome crosslinked polyacrylamide/DNA hydrogel: a smart controlled-release system for small molecular payloads. Small, 2018, 14(15), 170439. doi:10.1002/smll.201704039http://dx.doi.org/10.1002/smll.201704039
Zhang J.; Guo Y. Y.; Pan G. F.; Wang P.; Li Y. H.; Zhu X. Y.; Zhang C. Injectable drug-conjugated DNA hydrogel for local chemotherapy to prevent tumor recurrence. ACS Appl. Mater. Interfaces, 2020, 12(19), 21441-21449. doi:10.1021/acsami.0c03360http://dx.doi.org/10.1021/acsami.0c03360
0
Views
151
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution