浏览全部资源
扫码关注微信
1.南开大学化学学院 高分子化学研究所 天津 300071
2.温州医科大学附属第一医院 转化医学实验室 温州 325000
3.国科温州研究院(温州生物材料与工程研究所) 温州 325001
Published:20 April 2023,
Published Online:10 January 2023,
Received:11 November 2022,
Accepted:21 December 2022
扫 描 看 全 文
陈华,崔力允,李圆凤等.苯硼酸功能化聚合物纳米载体用于蛋白质药物胞内递送[J].高分子学报,2023,54(04):451-466.
Chen Hua,Cui Li-yun,Li Yuan-feng,et al.Phenylboronic Acid Functionalized Polymer Nanocarriers for Intracellular Delivery of Protein Drugs[J].ACTA POLYMERICA SINICA,2023,54(04):451-466.
陈华,崔力允,李圆凤等.苯硼酸功能化聚合物纳米载体用于蛋白质药物胞内递送[J].高分子学报,2023,54(04):451-466. DOI: 10.11777/j.issn1000-3304.2022.22384.
Chen Hua,Cui Li-yun,Li Yuan-feng,et al.Phenylboronic Acid Functionalized Polymer Nanocarriers for Intracellular Delivery of Protein Drugs[J].ACTA POLYMERICA SINICA,2023,54(04):451-466. DOI: 10.11777/j.issn1000-3304.2022.22384.
蛋白质药物在疾病治疗方面具有广泛应用,但它们的低细胞膜穿透性往往导致生物利用度较低. 近年来,人们开发了一系列纳米载体用于提高蛋白质药物的胞内递送效率,其中基于苯硼酸及其衍生物的聚合物纳米载体显示出良好的应用前景. 本文综述了苯硼酸功能化聚合物纳米载体在蛋白质药物胞内递送方面的最新研究进展. 首先,简要介绍了苯硼酸的化学性质及其二醇、pH和活性氧(ROS)响应性. 其次,从苯硼酸与蛋白质药物的结合方式不同出发,重点综述了通过动态共价作用和N→B配位等非共价作用构筑的苯硼酸功能化聚合物纳米载体在蛋白质药物胞内递送方面的典型研究实例,并对这些载体的组成、构筑方式和响应性释放机制进行了分析、总结. 最后,介绍了利用苯硼酸增强细胞摄取和促进药物透过血脑屏障方面的研究进展. 希望能为设计制备基于苯硼酸的新型蛋白质药物胞内递送体系提供借鉴.
Protein drugs have a wide range of applications in the treatment of many diseases. However
the poor cell membrane penetration of protein drugs often leads to low bioavailability. In recent years
a series of nanocarriers have been developed to improve the efficiency of intracellular delivery of protein drugs. Among them
nanocarrier based on phenylboronic acid and its derivatives have shown good application prospects. This paper reviews the latest research progress of phenylboronic acid-functionalized polymer nanocarriers for intracellular delivery of protein drugs. Firstly
the chemical properties of phenylboronic acid and its responsiveness to diols
pH and ROS are briefly introduced. Secondly
from the perspective of different binding modes of phenylboronic acid and protein drugs
this review focuses on the typical research examples of phenylboronic acid-functionalized polymer nanocarriers constructed by dynamic covalent bonds and non-covalent interactions such as N→B coordination in the intracellular delivery of protein drugs. The compositions
construction method
and responsive release mechanism of these nanocarriers are analyzed and summarized. Finally
the research progress of phenylboronic acid in enhancing cell uptake and drug permeation through blood brain barrier is introduced. It is hoped that this paper can provide a reference for the design and preparation of novel intracellular delivery systems of protein drugs based on phenylboronic acid.
蛋白质药物胞内递送苯硼酸响应性释放纳米载体
Protein drugsIntracellular deliveryPhenylboronic acidResponsive releaseNanocarriers
Zhang N.; Mei K.; Guan P.; Hu X. L.; Zhao Y. L. Protein-based artificial nanosystems in cancer therapy. Small, 2020, 16(23), 1907256. doi:10.1002/smll.201907256http://dx.doi.org/10.1002/smll.201907256
Censi R.; Di Martino P.; Vermonden T.; Hennink W. E. Hydrogels for protein delivery in tissue engineering. J. Control. Release, 2012, 161(2), 680-692. doi:10.1016/j.jconrel.2012.03.002http://dx.doi.org/10.1016/j.jconrel.2012.03.002
Yu M. Y.; Wu J.; Shi J. J.; Farokhzad O. C. Nanotechnology for protein delivery: overview and perspectives. J. Control. Release, 2016, 240(28), 24-37. doi:10.1016/j.jconrel.2015.10.012http://dx.doi.org/10.1016/j.jconrel.2015.10.012
Schumann T.; König J.; Henke C.; Willmes D. M.; Bornstein S. R.; Jordan J.; Fromm M. F.; Birkenfeld A. L. Solute carrier transporters as potential targets for the treatment of metabolic disease. Pharmacol. Rev., 2020, 72, 343-379. doi:10.1124/pr.118.015735http://dx.doi.org/10.1124/pr.118.015735
Li C.; Liu X. Y.; Zhang Y. L.; Lv J.; Huang F.; Wu G.; Liu Y.; Ma R. J.; An Y. L.; Shi L. Q. Nanochaperones mediated delivery of insulin. Nano Lett., 2020, 20(3), 1755-1765. doi:10.1021/acs.nanolett.9b04966http://dx.doi.org/10.1021/acs.nanolett.9b04966
Forlino A.; Marini, C. J. Osteogenesis imperfecta. Lancet, 2016, 387, 1657-1671. doi:10.1016/s0140-6736(15)00728-xhttp://dx.doi.org/10.1016/s0140-6736(15)00728-x
Brown K.; Green, G. The haemophilia drug market. Nat. Rev. Drug Discov., 2018, 17(8), 541-542. doi:10.1038/nrd.2018.54http://dx.doi.org/10.1038/nrd.2018.54
Cheng L.; Cai Z. W.; Ye T. J.; Yu X. H.; Chen Z. J.; Yan Y. F.; Qi J.; Wang L.; Liu Z. H.; Cui W. G.; Deng L. F. Injectable polypeptide-protein hydrogels for promoting infected wound healing. Adv. Funct. Mater., 2020, 30(25), 2001196. doi:10.1002/adfm.202001196http://dx.doi.org/10.1002/adfm.202001196
Zhu L.; Xu L. L.; Wu X. H.; Deng F.; Ma R. J.; Liu Y.; Huang F.; Shi L. Q. Tau-targeted multifunctional nanoinhibitor for alzheimer's disease. ACS Appl. Mater. Interfaces, 2021, 13(20), 23328. doi:10.1021/acsami.1c00257http://dx.doi.org/10.1021/acsami.1c00257
Zhao Y.; Cai J. Q.; Liu Z. C.; Li Y. S.; Zheng C. X.; Zheng Y. D.; Chen Q.; Chen H. Y.; Ma F. H.; An Y. L.; Xiao L. H.; Jiang C. L.; Shi L. Q.; Kang C. S.; Liu Y. Nanocomposites inhibit the formation, mitigate the neurotoxicity, and facilitate the removal of beta-amyloid aggregates in alzheimer's disease mice. Nano Lett., 2019, 19(2), 674-683. doi:10.1021/acs.nanolett.8b03644http://dx.doi.org/10.1021/acs.nanolett.8b03644
Peng C.; Trojanowski J. Q.; Lee V. M. Protein transmission in neurodegenerative disease. Nat. Rev. Neurol., 2020, 16(4), 199-212. doi:10.1038/s41582-020-0333-7http://dx.doi.org/10.1038/s41582-020-0333-7
Zhu L.; Zhang M. Q.; Jing H. R.; Zhang X. P.; Xu L. L.; Ma R. J.; Huang F.; Shi L. Q. Bioinspired self-assembly nanochaperone inhibits Tau-derived PHF6 peptide aggregation in alzheimer's disease. Chinese J. Polym. Sci., 2022, 40(9), 1062-1070. doi:10.1007/s10118-022-2799-9http://dx.doi.org/10.1007/s10118-022-2799-9
An Y. H.; Park M. J.; Lee J.; Ko J.; Kim S. H.; Kang D. H.; Hwang N. S. Recent advances in the transdermal delivery of protein therapeutics with a combinatorial system of chemical adjuvants and physical penetration enhancements. Adv. Therap., 2020, 3(2), 1900116. doi:10.1002/adtp.201900116http://dx.doi.org/10.1002/adtp.201900116
Xin X. F.; Teng C.; Du X. Q.; Lv Y. Q.; Xiao Q. Q.; Wu Y. B.; He W.; Yin L. F. Drug-delivering-drug platform-mediated potent protein therapeutics via a non-endo-lysosomal route. Theranostics, 2018, 8(13), 3474-3489. doi:10.7150/thno.23804http://dx.doi.org/10.7150/thno.23804
Han Y.; Gao Z. G.; Chen L. Q.; Kang L.; Huang W.; Jin M. J.; Wang Q. M.; Bae Y. H. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm. Sin. B, 2019, 9(5), 902-922. doi:10.1016/j.apsb.2019.01.004http://dx.doi.org/10.1016/j.apsb.2019.01.004
孙瑞; 邱娜莎; 申有青. 高分子抗肿瘤纳米药物的挑战与发展. 高分子学报, 2019, 50(6), 588-601. doi:10.11777/j.issn1000-3304.2019.19005http://dx.doi.org/10.11777/j.issn1000-3304.2019.19005
Chen G. Y.; Kang W. R.; Li W. Q.; Chen S. M.; Gao Y. F. Oral delivery of protein and peptide drugs: from non-specific formulation approaches to intestinal cell targeting strategies. Theranostics, 2022, 12(3), 1419-1439. doi:10.7150/thno.61747http://dx.doi.org/10.7150/thno.61747
Zhu Q. G.; Chen Z. J.; Paul P. K.; Lu Y.; Wu W.; Qi J. P. Oral delivery of proteins and peptides: challenges, status quo and future perspectives. Acta Pharm. Sin. B, 2021, 11(8), 2416-2448. doi:10.1016/j.apsb.2021.04.001http://dx.doi.org/10.1016/j.apsb.2021.04.001
Sadeghi S.; Lee W. K.; Kong S. N.; Shetty A.; Drum C. L. Oral administration of protein nanoparticles: an emerging route to disease treatment. Pharmacol. Res., 2020, 158, 104685. doi:10.1016/j.phrs.2020.104685http://dx.doi.org/10.1016/j.phrs.2020.104685
Haddadzadegan S.; Dorkoosh F.; Bernkop-Schnurch A. Oral delivery of therapeutic peptides and proteins: technology landscape of lipid-based nanocarriers. Adv. Drug Deliv. Rev., 2022, 182, 114097. doi:10.1016/j.addr.2021.114097http://dx.doi.org/10.1016/j.addr.2021.114097
Yadav P.; McLeod V. M.; Nowell C. J.; Selby L. I.; Johnston A. P. R.; Kaminskas L. M.; Trevaskis N. L. Distribution of therapeutic proteins into thoracic lymph after intravenous administration is protein size-dependent and primarily occurs within the liver and mesentery. J. Control. Release, 2018, 272, 17-28. doi:10.1016/j.jconrel.2017.12.031http://dx.doi.org/10.1016/j.jconrel.2017.12.031
Brown T. D.; Whitehead K. A.; Mitragotri S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater., 2019, 5(2), 127-148. doi:10.1038/s41578-019-0156-6http://dx.doi.org/10.1038/s41578-019-0156-6
曾志勇; 江国华; 刘天琦; 张雪雅; 孙延芳. 聚合物微针药物经皮递送应用研究进展. 高分子学报, 2022, 53(8), 876-893. doi:10.11777/j.issn1000-3304.2022.22001http://dx.doi.org/10.11777/j.issn1000-3304.2022.22001
Wang R. N.; Yin C. F.; Liu C. R.; Sun Y.; Xiao P. P.; Li J.; Yang S.; Wu W.; Jiang X. Q. Phenylboronic acid modification augments the lysosome escape and antitumor efficacy of a cylindrical polymer brush-based prodrug. J. Am. Chem. Soc., 2021, 143(49), 20927-20938. doi:10.1021/jacs.1c09741http://dx.doi.org/10.1021/jacs.1c09741
Pei D.; Buyanova M. Overcoming endosomal entrapment in drug delivery. Bioconjugate Chem., 2019, 30(2), 273-283. doi:10.1021/acs.bioconjchem.8b00778http://dx.doi.org/10.1021/acs.bioconjchem.8b00778
Cheng H.; Jiang Z. J.; Sun C. K.; Wang Z.; Han G. C.; Chen X.; Li T. Y.; Fan Z. C.; Zhang F.; Yang X. Y.; Lv L. Y.; Zhang H. Q.; Zhou J. P.; Ding Y. Protein stabilized polymeric nanoparticles inspired relay drug delivery for tackling post-chemotherapeutic metastasis. Chem. Eng. J., 2022, 427, 131672. doi:10.1016/j.cej.2021.131672http://dx.doi.org/10.1016/j.cej.2021.131672
Taleb M.; Ding Y. P.; Wang B.; Yang N.; Han X. X.; Du C.; Qi Y. Q.; Zhang Y. L.; Sabet Z. F.; Alanagh H. R.; Mujeeb A.; Khajeh K.; Nie G. J. Dopamine delivery via pH-sensitive nanoparticles for tumor blood vessel normalization and an improved effect of cancer chemotherapeutic drugs. Adv. Healthc. Mater., 2019, 8(18), 1900283. doi:10.1002/adhm.201900283http://dx.doi.org/10.1002/adhm.201900283
李怡静; 龚雪峰; 王冬; 杨洲; 曹晖; 王磊. 基于多肽的药物递送系统研究进展. 高分子学报, 2022, 53(5), 445-456. doi:10.11777/j.issn1000-3304.2021.21369http://dx.doi.org/10.11777/j.issn1000-3304.2021.21369
Zhang Z. Z.; Wang Q. X.; Liu Q.; Zheng Y. D.; Zheng C. X.; Yi K. K.; Zhao Y.; Gu Y.; Wang Y.; Wang C.; Zhao X. Z.; Shi L. Q.; Kang C. S.; Liu Y. Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy. Adv. Mater., 2019, 31(51), 1905751. doi:10.1002/adma.201905751http://dx.doi.org/10.1002/adma.201905751
Wang X.; Tang H.; Wang C. Z.; Zhang J. L.; Wu W.; Jiang X. Q. Phenylboronic acid-mediated tumor targeting of chitosan nanoparticles. Theranostics, 2016, 6(9), 1378-1392. doi:10.7150/thno.15156http://dx.doi.org/10.7150/thno.15156
Li C.; Wu G.; Ma R. J.; Liu Y.; Liu Y.; Lv J.; An Y. L.; Shi L. Q. Nitrilotriacetic acid(NTA) and phenylboronic acid(PBA) functionalized nanogels for efficient encapsulation and controlled release of insulin. ACS Biomater. Sci. Eng., 2018, 4(6), 2007-2017. doi:10.1021/acsbiomaterials.7b00546http://dx.doi.org/10.1021/acsbiomaterials.7b00546
Li C.; Huang F.; Liu Y.; Lv J.; Wu G.; Liu Y.; Ma R. J.; An Y. L.; Shi L. Q. Nitrilotriacetic acid-functionalized glucose-responsive complex micelles for the efficient encapsulation and self-regulated release of insulin. Langmuir, 2018, 34(40), 12116-12125. doi:10.1021/acs.langmuir.8b02574http://dx.doi.org/10.1021/acs.langmuir.8b02574
Liu X. Y.; Li C.; Lv J.; Huang F.; An Y. L.; Shi L. Q.; Ma R. J. Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin. ACS Appl. Bio Mater., 2020, 3(3), 1598-1606. doi:10.1021/acsabm.9b01185http://dx.doi.org/10.1021/acsabm.9b01185
Li J. J.; Cha R. T.; Luo H. Z.; Hao W. S.; Zhang Y.; Jiang X. Y. Nanomaterials for the theranostics of obesity. Biomaterials, 2019, 223, 119474. doi:10.1016/j.biomaterials.2019.119474http://dx.doi.org/10.1016/j.biomaterials.2019.119474
Li Y. F.; Su L. Z.; Zhang Y. X.; Liu Y.; Huang F.; Ren Y. J.; An Y. L.; Shi L. Q.; van der Mei H. C.; Busscher H. J. A guanosine-quadruplex hydrogel as cascade reaction container consuming endogenous glucose for infected wound treatment-a study in diabetic mice. Adv. Sci., 2022, 9(7), 2103485. doi:10.1002/advs.202103485http://dx.doi.org/10.1002/advs.202103485
Su L. Z.; Liu Y.; Li Y. F.; An Y. L.; Shi L. Q. Responsive polymeric nanoparticles for biofilm-infection control. Chinese J. Polym. Sci., 2021, 39(11), 1376-1391. doi:10.1007/s10118-021-2610-3http://dx.doi.org/10.1007/s10118-021-2610-3
Brooks W. L.; Sumerlin B. S. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev., 2016, 116(3), 1375-1397. doi:10.1021/acs.chemrev.5b00300http://dx.doi.org/10.1021/acs.chemrev.5b00300
Stubelius A.; Lee S.; Almutairi A. The chemistry of boronic acids in nanomaterials for drug delivery. Acc. Chem. Res., 2019, 52(11), 3108-3119. doi:10.1021/acs.accounts.9b00292http://dx.doi.org/10.1021/acs.accounts.9b00292
Chen W. Z.; Zhen X.; Wu W.; Jiang X. Q. Responsive boron biomaterials and their biomedical applications. Sci. China Chem., 2020, 63(5), 648-664. doi:10.1007/s11426-019-9699-3http://dx.doi.org/10.1007/s11426-019-9699-3
Yan J.; Springsteen G.; Deeter S.; Wang B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—it is not as simple as it appears. Tetrahedron, 2004, 60, 11205-11209. doi:10.1016/j.tet.2004.08.051http://dx.doi.org/10.1016/j.tet.2004.08.051
Ma R. J.; Shi L. Q. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polym. Chem., 2014, 5(5), 1503-1518. doi:10.1039/c3py01202fhttp://dx.doi.org/10.1039/c3py01202f
Minami T.; Emami F.; Nishiyabu R.; Kubo Y.; Anzenbacher P. Quantitative analysis of modeled ATP hydrolysis in water by a colorimetric sensor array. Chem. Commun., 2016, 52(50), 7838-7841. doi:10.1039/c6cc02923jhttp://dx.doi.org/10.1039/c6cc02923j
Qian C. G.; Chen Y. L.; Zhu S.; Yu J. C.; Zhang L.; Feng P. J.; Tang X.; Hu Q. Y.; Sun W. J.; Lu Y.; Xiao X. Z.; Shen Q. D.; Gu Z. ATP-responsive and near-infrared-emissive nanocarriers for anticancer drug delivery and real-time imaging. Theranostics, 2016, 6(7), 1053-1064. doi:10.7150/thno.14843http://dx.doi.org/10.7150/thno.14843
Yang H.; Zhang C.; Li C.; Liu Y.; An Y. L.; Ma R. J.; Shi L. Q. Glucose-responsive polymer vesicles templated by α-CD/PEG inclusion complex. Biomacromolecules, 2015, 16(4), 1372-1381. doi:10.1021/acs.biomac.5b00155http://dx.doi.org/10.1021/acs.biomac.5b00155
Lv J.; Wu G.; Liu Y.; Li C.; Huang F.; Zhang Y. M.; Liu J. J.; An Y. L.; Ma R. J.; Shi L. Q. Injectable dual glucose-responsive hydrogel-micelle composite for mimicking physiological basal and prandial insulin delivery. Sci. China Chem., 2019, 62(5), 637-648. doi:10.1007/s11426-018-9419-3http://dx.doi.org/10.1007/s11426-018-9419-3
C., B.; Stoel, M. A.; den Brok, M. H.; Adema, G. J. Sialic acids sweeten a tumor's life. Cancer Res., 2014, 74(12), 3199-3204. doi:10.1158/0008-5472.can-14-0728http://dx.doi.org/10.1158/0008-5472.can-14-0728
Di Virgilio F.; Sarti A. C.; Falzoni S.; de Marchi E.; Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer, 2018, 18, 601-618. doi:10.1038/s41568-018-0037-0http://dx.doi.org/10.1038/s41568-018-0037-0
Berke, J. D. What does dopamine mean? Nat. Neurosci. , 2018, 21, 787-793. doi:10.1038/s41593-018-0152-yhttp://dx.doi.org/10.1038/s41593-018-0152-y
Lv W.; Xu J. P.; Wang X. Q.; Li X. R.; Xu Q. W.; Xin H. L. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano, 2018, 12(6), 5417-5426. doi:10.1021/acsnano.8b00477http://dx.doi.org/10.1021/acsnano.8b00477
Liu W. B.; Kang S. M.; Xu X. H.; Zhou L.; Liu N.; Wu Z. Q. Controlled synthesis of shell cross-linked helical poly(phenylborate isocyanide) nanoparticles with H2O2/redox dual responsiveness and their application in antitumor drug delivery. ACS Appl. Bio Mater., 2020, 3(9), 5620-5626. doi:10.1021/acsabm.0c00523http://dx.doi.org/10.1021/acsabm.0c00523
李逸佳; 田瑞桢; 徐家云; 侯春喜; 罗全; 刘俊秋. 蛋白质超分子聚合物及其应用. 高分子学报, 2022, 53(10), 1217-1238. doi:10.11777/j.issn1000-3304.2022.22161http://dx.doi.org/10.11777/j.issn1000-3304.2022.22161
Sun Y.; Lau S. Y.; Lim Z. W.; Chang S. C.; Ghadessy F.; Partridge A.; Miserez A. Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics. Nat. Chem., 2022, 14, 274-283. doi:10.1038/s41557-021-00854-4http://dx.doi.org/10.1038/s41557-021-00854-4
Tang J. K.; Liu Y.; Qi D. M.; Yang L.; Chen H.; Wang C. H.; Feng X. L. Nucleus-targeted delivery of multi-protein self-assembly for combined anticancer therapy. Small, 2021, 17(25), 2101219. doi:10.1002/smll.202101219http://dx.doi.org/10.1002/smll.202101219
Wang H.; Li A.; Yang M. L.; Zhao Y.; Shi L. Q.; Ma R. J. Self-assembled nanochaperones enable the disaggregation of amyloid insulin fibrils. Sci. China Chem., 2021, 65(2), 353-362. doi:10.1007/s11426-021-1155-9http://dx.doi.org/10.1007/s11426-021-1155-9
Guo Y. X.; Sun Q.; Wu F. G.; Dai Y. L.; Chen X. Y. Polyphenol-containing nanoparticles: synthesis, properties, and therapeutic delivery. Adv. Mater. , 2021, 33(22), 2007356. doi:10.1002/adma.202007356http://dx.doi.org/10.1002/adma.202007356
Zhou J. J.; Lin Z. X.; Ju Y.; Arifur Rahim M.; Richardson J. J.; Caruso F. Polyphenol-mediated assembly for particle engineering. Acc. Chem. Res., 2020, 53(7), 1269-1278. doi:10.1021/acs.accounts.0c00150http://dx.doi.org/10.1021/acs.accounts.0c00150
Zhang X. Q.; Li Z.; Yang P.; Duan G. G.; Liu X. H.; Gu Z. P.; Li Y. W. Polyphenol scaffolds in tissue engineering. Mater. Horiz., 2021, 8(1), 145-167. doi:10.1039/d0mh01317jhttp://dx.doi.org/10.1039/d0mh01317j
Liu C. Y.; Shen W. W.; Li B. N.; Li T. F.; Chang H.; Cheng Y. Y. Natural polyphenols augment cytosolic protein delivery by a functional polymer. Chem. Mater., 2019, 31(6), 1956-1965. doi:10.1021/acs.chemmater.8b04672http://dx.doi.org/10.1021/acs.chemmater.8b04672
Honda Y.; Nomoto T.; Matsui M.; Takemoto H.; Kaihara Y.; Miura Y.; Nishiyama N. Sequential self-assembly using tannic acid and phenylboronic acid-modified copolymers for potential protein delivery. Biomacromolecules, 2020, 21(9), 3826-3835. doi:10.1021/acs.biomac.0c00903http://dx.doi.org/10.1021/acs.biomac.0c00903
Qiao H. Z.; Fang D.; Zhang L.; Gu X. C.; Lu Y.; Sun M. J.; Sun C. M.; Ping Q.; Li J. S.; Chen Z. P.; Chen J.; Hu L. H.; Di L. Q. Nanostructured peptidotoxins as natural pro-oxidants induced cancer cell death via amplification of oxidative stress. ACS Appl. Mater. Interfaces, 2018, 10(5), 4569-4581. doi:10.1021/acsami.7b18809http://dx.doi.org/10.1021/acsami.7b18809
Wang M.; Sun S.; Neufeld C. I.; Perez-Ramirez B.; Xu Q. B. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew. Chem. Int. Ed., 2014, 53(49), 13444-13448. doi:10.1002/anie.201407234http://dx.doi.org/10.1002/anie.201407234
He H.; Chen Y. B.; Li Y. J.; Song Z. Y.; Zhong Y. N.; Zhu R. Y.; Cheng J. J.; Yin L. C. Effective and selective anti-cancer protein delivery via all-functions-in-one nanocarriers coupled with visible light-responsive, reversible protein engineering. Adv. Funct. Mater., 2018, 28(14), 1706710. doi:10.1002/adfm.201706710http://dx.doi.org/10.1002/adfm.201706710
Zhao Z. Y.; Liu X.; Hou M. Y.; Zhou R. X.; Wu F.; Yan J.; Li W.; Zheng Y. J.; Zhong Q. M.; Chen Y. B.; Yin L. C. Endocytosis-independent and cancer-selective cytosolic protein delivery via reversible tagging with LAT1 substrate. Adv. Mater., 2022, 34(35), 2110560. doi:10.1002/adma.202110560http://dx.doi.org/10.1002/adma.202110560
Zhang P.; Zhang Y.; Ding X. Y.; Shen W.; Li M. Q.; Wagner E.; Xiao C. S.; Chen X. S. A multistage cooperative nanoplatform enables intracellular co-delivery of proteins and chemotherapeutics for cancer therapy. Adv. Mater., 2020, 32(46), 2000013. doi:10.1002/adma.202000013http://dx.doi.org/10.1002/adma.202000013
Rong G. Y.; Chen L. J.; Zhu F.; Tan E.; Cheng Y. Y. Polycatechols with robust efficiency in cytosolic peptide delivery via catechol-boronate chemistry. Nano Lett., 2022, 22(15), 6245-6253. doi:10.1021/acs.nanolett.2c01810http://dx.doi.org/10.1021/acs.nanolett.2c01810
Liu B.; Ianosi-Irimie M.; Thayumanavan S. Reversible click chemistry for ultrafast and quantitative formation of protein-polymer nanoassembly and intracellular protein delivery. ACS Nano, 2019, 13(8), 9408-9420. doi:10.1021/acsnano.9b04198http://dx.doi.org/10.1021/acsnano.9b04198
Lv S. X.; Wu Y. C.; Cai K. M.; He H.; Li Y. J.; Lan M.; Chen X. S.; Cheng J. J.; Yin L. C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions. J. Am. Chem. Soc., 2018, 140(4), 1235-1238. doi:10.1021/jacs.7b12776http://dx.doi.org/10.1021/jacs.7b12776
Wang J.; Wu W.; Zhang Y. J.; Wang X.; Qian H. Q.; Liu B. R.; Jiang X. Q. The combined effects of size and surface chemistry on the accumulation of boronic acid-rich protein nanoparticles in tumors. Biomaterials, 2014, 35, 866-878. doi:10.1016/j.biomaterials.2013.10.028http://dx.doi.org/10.1016/j.biomaterials.2013.10.028
Liu C. Y.; Wan T.; Wang H.; Zhang S.; Ping Y.; Cheng Y. Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv., 2019, 5(6), eaaw8922. doi:10.1126/sciadv.aaw8922http://dx.doi.org/10.1126/sciadv.aaw8922
Wang Q.; Yang Y. F.; Liu D. K.; Ji Y.; Gao X. D.; Yin J.; Yao W. B. Cytosolic protein delivery for intracellular antigen targeting using supercharged polypeptide delivery platform. Nano Lett., 2021, 21(14), 6022-6030. doi:10.1021/acs.nanolett.1c01190http://dx.doi.org/10.1021/acs.nanolett.1c01190
Zhang S.; Cheng Y. Y. Boronic acid-engineered gold nanoparticles for cytosolic protein delivery. Biomater. Sci., 2020, 8(13), 3741-3750. doi:10.1039/d0bm00679chttp://dx.doi.org/10.1039/d0bm00679c
Liu X.; Zhao Z. Y.; Wu F.; Chen Y. B.; Yin L. C. Tailoring hyperbranched poly(beta-amino ester) as a robust and universal platform for cytosolic protein delivery. Adv. Mater., 2022, 34(8), 2108116. doi:10.1002/adma.202108116http://dx.doi.org/10.1002/adma.202108116
Xu J. K.; Li Z.; Fan Q. Q.; Lv J.; Li Y. W.; Cheng Y. Y. Dynamic polymer amphiphiles for efficient intracellular and in vivo protein delivery. Adv. Mater., 2021, 33(52), 2104355. doi:10.1002/adma.202104355http://dx.doi.org/10.1002/adma.202104355
Zhou Z. W.; Zhang M. H.; Liu Y. D.; Li C. Z.; Zhang Q. Y.; Oupicky D.; Sun M. J. Reversible covalent cross-linked polycations with enhanced stability and ATP-responsive behavior for improved siRNA delivery. Biomacromolecules, 2018, 19(9), 3776-3787. doi:10.1021/acs.biomac.8b00922http://dx.doi.org/10.1021/acs.biomac.8b00922
Cho H.; Cho Y. Y.; Bae Y. H.; Kang H. C. Nucleotides as nontoxic endogenous endosomolytic agents in drug delivery. Adv. Healthc. Mater., 2014, 3(7), 1007-1014. doi:10.1002/adhm.201400008http://dx.doi.org/10.1002/adhm.201400008
Honda Y.; Nomoto T.; Matsui M.; Takemoto H.; Miura Y.; Nishiyama N. Sequentially self-assembled nanoreactor comprising tannic acid and phenylboronic acid-conjugated polymers inducing tumor-selective enzymatic activity. ACS Appl. Mater. Interfaces, 2021, 13(46), 54850-54859. doi:10.1021/acsami.1c20188http://dx.doi.org/10.1021/acsami.1c20188
Lv J.; Wang C. P.; Li H. R.; Li Z.; Fan Q. Q.; Zhang Y.; Li Y. W.; Wang H.; Cheng Y. Y. Bifunctional and bioreducible dendrimer bearing a fluoroalkyl tail for efficient protein delivery both in vitro and in vivo. Nano Lett., 2020, 20(12), 8600-8607. doi:10.1021/acs.nanolett.0c03287http://dx.doi.org/10.1021/acs.nanolett.0c03287
Qian X. P.; Ge L.; Yuan K. J.; Li C.; Zhen X.; Cai W. B.; Cheng R. S.; Jiang X. Q. Targeting and microenvironment-improving of phenylboronic acid-decorated soy protein nanoparticles with different sizes to tumor. Theranostics, 2019, 9(24), 7417-7430. doi:10.7150/thno.33470http://dx.doi.org/10.7150/thno.33470
Lv J.; Liu C. Y.; Lv K. X.; Wang H.; Cheng Y. Y. Boronic acid-rich dendrimer for efficient intracellular peptide delivery. Sci. China Mater., 2019, 63(4), 620-628. doi:10.1007/s40843-019-1213-2http://dx.doi.org/10.1007/s40843-019-1213-2
Heise T.; Pijnenborg J. F. A.; Bull C.; Hilten N.; Kers-Rebel E. D.; Balneger N.; Elferink H.; Adema G. J.; Boltje T. J. Potent metabolic sialylation inhibitors based on C-5-modified fluorinated sialic acids. J. Med. Chem., 2019, 62(2), 1014-1021. doi:10.1021/acs.jmedchem.8b01757http://dx.doi.org/10.1021/acs.jmedchem.8b01757
Wang J.; Zhang Z. H.; Wang X.; Wu W.; Jiang X. Q. Size-and pathotropism-driven targeting and washout-resistant effects of boronic acid-rich protein nanoparticles for liver cancer regression. J. Control. Release, 2013, 168(1), 1-9. doi:10.1016/j.jconrel.2013.02.019http://dx.doi.org/10.1016/j.jconrel.2013.02.019
Liu H. L.; Li Y. Y.; Sun K.; Fan J. B.; Zhang P. C.; Meng J. X.; Wang S. T.; Jiang L. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc., 2013, 135(20), 7603-7609. doi:10.1021/ja401000mhttp://dx.doi.org/10.1021/ja401000m
Lee J. Y.; Chung S. J.; Cho H. J.; Kim D. D. Phenylboronic acid-decorated chondroitin sulfate A-based theranostic nanoparticles for enhanced tumor targeting and penetration. Adv. Funct. Mater., 2015, 25(24), 3705-3717. doi:10.1002/adfm.201500680http://dx.doi.org/10.1002/adfm.201500680
Liu Y. S.; Chiu C. C.; Chen H. Y.; Chen S. H.; Wang L. F. Preparation of chondroitin sulfate-g-poly(ε-caprolactone) copolymers as a CD44-targeted vehicle for enhanced intracellular uptake. Mol. Pharm., 2014, 11(4), 1164-1175. doi:10.1021/mp400607hhttp://dx.doi.org/10.1021/mp400607h
Ji M. Y.; Li P.; Sheng N.; Liu L. L.; Pan H.; Wang C.; Cai L. T.; Ma Y. F. Sialic acid-targeted nanovectors with phenylboronic acid-grafted polyethylenimine robustly enhance siRNA-based cancer therapy. ACS Appl. Mater. Interfaces, 2016, 8(15), 9565-9576. doi:10.1021/acsami.5b11866http://dx.doi.org/10.1021/acsami.5b11866
Li Y. H.; Chen Z. X.; Lu Z. G.; Yang Q. H.; Liu L. Y.; Jiang Z. T.; Zhang L. Q.; Zhang X.; Qing H. "Cell-addictive" dual-target traceable nanodrug for Parkinson's disease treatment via flotillins pathway. Theranostics, 2018, 8(19), 5469-5481. doi:10.7150/thno.28295http://dx.doi.org/10.7150/thno.28295
Yang J. U.; Kim S.; Lee K. C.; Lee Y. J.; Kim J. Y.; Park J. A. Development of brain-tumor-targeted benzothiazole-based boron complex for boron neutron capture therapy. ACS Med. Chem. Lett., 2022, 13(10), 1615-1620. doi:10.1021/acsmedchemlett.2c00284http://dx.doi.org/10.1021/acsmedchemlett.2c00284
Akgun B.; Hall D. G. Boronic acids as bioorthogonal probes for site-selective labeling of proteins. Angew. Chem. Int. Ed., 2018, 57(40), 13028-13044. doi:10.1002/anie.201712611http://dx.doi.org/10.1002/anie.201712611
0
Views
152
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution