浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中国科学院高性能合成橡胶及其复合材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
Jian-yun He, E-mail: jyhe@ciac.ac.cn
Chen-xi Bai, E-mail: baicx@ciac.ac.cn
Published:20 May 2023,
Published Online:10 February 2023,
Received:16 November 2022,
Accepted:30 December 2022
扫 描 看 全 文
冯展威,代全权,贺剑云等.聚氨基酸接枝聚异戊二烯的仿生合成与性能[J].高分子学报,2023,54(05):593-600.
Feng Zhan-wei,Dai Quan-quan,He Jian-yun,et al.Biomimetic Synthesis and Properties of Polyisoprene-based Rubber Grafted with Poly(amino acid)[J].ACTA POLYMERICA SINICA,2023,54(05):593-600.
冯展威,代全权,贺剑云等.聚氨基酸接枝聚异戊二烯的仿生合成与性能[J].高分子学报,2023,54(05):593-600. DOI: 10.11777/j.issn1000-3304.2022.22390.
Feng Zhan-wei,Dai Quan-quan,He Jian-yun,et al.Biomimetic Synthesis and Properties of Polyisoprene-based Rubber Grafted with Poly(amino acid)[J].ACTA POLYMERICA SINICA,2023,54(05):593-600. DOI: 10.11777/j.issn1000-3304.2022.22390.
通过硫醇-烯点击反应将2-氨基乙硫醇接枝到聚异戊二烯主链上合成带有氨基侧链的聚异戊二烯,再通过侧链氨基引发L-缬氨酸-
N
-硫代羧基内酸酐(Val-NTA)单体和
β
-苯丙氨酸-
N
-硫代羧基内酸酐(
β
-Phe-NTA)单体的聚合,制备出2种方式改性的聚异戊二烯. 其中,Val-NTA聚合接枝聚异戊二烯的拉伸强度28.6 MPa,300%定伸强度18.9 MPa,相比天然橡胶分别提升10.7%和9.3%.
β
-Phe-NTA聚合接枝聚异戊二烯的拉伸强度28.0 MPa,比天然橡胶提升8.3%.
During the recent decades
the endogenous biocomponents contained within natural rubber
such as proteins and phospholipids
are believed to be the causation of its superior properties. A significant amount of work has focused on increasing crosslink density rather than introducing biobased groups. Inspired by the unique properties of natural rubber
one way to improve the performance of synthetic polyisoprene should tune to polyamino acid functionalization. In this work
one kind of high molecular weight polyisoprene
PI-NH
2
with amino side chains was prepared by grafting 2-Amino-1-ethanethiol
via
a thiol-ene click reaction. Then
PI-NH
2
as initiators with two kinds of NTA
which were highly active polyamino acid monomers
were utilized in the preparation of two kinds of poly(amino acid) grafted biomimetic synthetic polyisoprene PI-Vals
PI-
β
-Phes
via
amino side chains which demonstrates the efficiency and feasibility of this approach. Among them
the tensile strength of PI-Vals can reach 28.6 MPa
and the stress at 300% is 18.9 MPa
which is 10.7% and 9.3% higher than that of SCR20 natural rubber respectively
the tensile strength of PI-
β
-Phes can reach 28.0 MPa
8.3% higher than that of SCR20 natural rubber. The dynamic mechanical properties of PI-Vals are characterized by DMA tests
and the loss factor decreases and the energy storage modulus increases compared to those of NR and PI
reflecting a lower hysteresis loss
combined with a significant reduction in heat generation by compression
demonstrating a significant enhancement in dynamic heat generation performance. In addition
this modified preparation strategy for synthetic rubber holds promise for enhancing its range of applications and could serve as an alternative to high-performance rubber with the scarce resources of natural rubber.
聚氨基酸接枝聚异戊二烯硫醇-烯点击反应仿生合成橡胶硫代羧基内酸酐
Polyamino acid grafted polyisopreneThiol-ene click reactionBiomimetic synthetic rubberN-thiocarboxyanhydrides
Toki S.; Che J.; Rong L. X.; Hsiao B. S.; Amnuaypornsri S.; Nimpaiboon A.; Sakdapipanich J. Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules, 2013, 46(13), 5238-5248. doi:10.1021/ma400504khttp://dx.doi.org/10.1021/ma400504k
Tanaka Y. Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem. Technol., 2001, 74(3), 355-375. doi:10.5254/1.3547643http://dx.doi.org/10.5254/1.3547643
Wei Y. C.; Liu G. X.; Zhang L.; Xu W. Z.; Liao S. Q.; Luo M. C. Mimicking the mechanical robustness of natural rubber based on a sacrificial network constructed by phospholipids. ACS Appl. Mater. Interfaces, 2020, 12(12), 14468-14475. doi:10.1021/acsami.0c01994http://dx.doi.org/10.1021/acsami.0c01994
崔冬梅. 稀土催化极性单体配位均聚及与非极性单体共聚合的研究. 高分子学报, 2020, 51(1), 12-29. doi:10.11777/j.issn1000-3304.2020.19142http://dx.doi.org/10.11777/j.issn1000-3304.2020.19142
Liu D.; Bielawski C. W. Direct azidation of isotactic polypropylene and synthesis of ‘grafted to’ derivatives thereof using azide-alkyne cycloaddition chemistry. Polym. Int., 2017, 66(1), 70-76. doi:10.1002/pi.5180http://dx.doi.org/10.1002/pi.5180
Kim Y. H.; Pandya A. Hydroxylation of polyisoprene via addition of haloacetic acids to the double bond. Macromolecules, 1991, 24(24), 6505-6511. doi:10.1021/ma00024a022http://dx.doi.org/10.1021/ma00024a022
Reisinger J. J.; Hillmyer M. A. Synthesis of fluorinated polymers by chemical modification. Prog. Polym. Sci., 2002, 27(5), 971-1005. doi:10.1016/s0079-6700(02)00004-7http://dx.doi.org/10.1016/s0079-6700(02)00004-7
Kumar R.; Sayala K. D.; Cao Y. K.; Tsarevsky N. V. Functionalization of cis-1, 4-polyisoprene using hypervalent iodine compounds with tetrazole ligands. J. Polym. Sci., 2020, 58(1), 172-180. doi:10.1002/pola.29500http://dx.doi.org/10.1002/pola.29500
Tang M. Z.; Zhang R.; Li S. Q.; Zeng J.; Luo M. C.; Xu Y. X.; Huang G. S. Towards a supertough thermoplastic polyisoprene elastomer based on a biomimic strategy. Angew. Chem. Int. Ed., 2018, 57(48), 15836-15840. doi:10.1002/anie.201809339http://dx.doi.org/10.1002/anie.201809339
Radchenko A. V.; Grange J.; Vax A.; Jean-Baptiste-dit-Dominique F.; Matmour R.; Grelier S.; Peruch F. Facile synthesis of 1, 4-cis-polyisoprene-polypeptide hybrids with different architectures. Polym. Chem., 2019, 10(19), 2456-2468. doi:10.1039/c9py00241chttp://dx.doi.org/10.1039/c9py00241c
Chu H. L.; Song Y. Q.; Li J. H.; Luo F.; Tan H.; Huang G. S.; Fu Q. A novel phosphatidylcholine-modified polyisoprene: Synthesis and characterization. Colloid Polym. Sci., 2016, 294(2), 433-439. doi:10.1007/s00396-015-3798-yhttp://dx.doi.org/10.1007/s00396-015-3798-y
Li L.; Li S. H.; Cui D. M. Highly cis-1, 4-selective living polymerization of 3-methylenehepta-1,6-diene and its subsequent thiol-ene reaction: an efficient approach to functionalized diene-based elastomer. Macromolecules, 2016, 49(4), 1242-1251. doi:10.1021/acs.macromol.5b02654http://dx.doi.org/10.1021/acs.macromol.5b02654
Li L.; Li S. H.; Cui D. M. Chemo- and stereoselective polymerization of 3-methylenehepta-1,6-diene and its thiol-ene modification. J. Polym. Sci. A Polym. Chem., 2017, 55(6), 1031-1039. doi:10.1002/pola.28463http://dx.doi.org/10.1002/pola.28463
Fang S. F.; Wu S. W.; Huang J.; Wang D.; Tang Z. H.; Guo B. C.; Zhang L. Q. Notably improved dispersion of carbon black for high-performance natural rubber composites via triazolinedione click chemistry. Ind. Eng. Chem. Res., 2020, 59(48), 21047-21057. doi:10.1021/acs.iecr.0c04242http://dx.doi.org/10.1021/acs.iecr.0c04242
Wang S. X.; Tao Y.; Wang J. Q.; Tao Y. H.; Wang X. H. A versatile strategy for the synthesis of sequence-defined peptoids with side-chain and backbone diversity via amino acid building blocks. Chem. Sci., 2018, 10(5), 1531-1538. doi:10.1039/c8sc03415jhttp://dx.doi.org/10.1039/c8sc03415j
Tao X. F.; Li M. H.; Ling J. α-Amino acid N-thiocarboxyanhydrides: A novel synthetic approach toward poly(α-amino acid)s. Eur. Polym. J., 2018, 109, 26-42. doi:10.1016/j.eurpolymj.2018.08.039http://dx.doi.org/10.1016/j.eurpolymj.2018.08.039
Kaur K.; Enders P.; Zhu Y. M.; Bratton A. F.; Powell C. R.; Kashfi K.; Matson J. B. Amino acid-based H2donorsS: N-thiocarboxyanhydrides that release H2S with innocuous byproducts. Chem. Commun. (Camb), 2021, 57(45), 5522-5525. doi:10.1039/d1cc01309bhttp://dx.doi.org/10.1039/d1cc01309b
Zhou M.; Xiao X. M.; Cong Z. H.; Wu Y. M.; Zhang W. J.; Ma P. C.; Chen S.; Zhang H. D.; Zhang D. F.; Zhang D. H.; Luan X. F.; Mai Y. Y.; Liu R. H. Water-insensitive synthesis of poly-β-peptides with defined architecture. Angew. Chem. Int. Ed., 2020, 59(18), 7240-7244. doi:10.1002/anie.202001697http://dx.doi.org/10.1002/anie.202001697
0
Views
90
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution