浏览全部资源
扫码关注微信
1.中国石化北京化工研究院 北京 100013
2.中国科学院化学研究所 中国科学院工程塑料重点实验室 北京 100190
3.中国科学院大学化学科学学院 北京 100049
Jin-ming Zhang, E-mail: zhjm@iccas.ac.cn
Published:20 July 2023,
Published Online:29 March 2023,
Received:18 November 2022,
Revised:13 February 2023,
扫 描 看 全 文
卢洪超,夏钲豪,米勤勇等.凝固浴温度对再生纤维素材料结构与性能的影响研究[J].高分子学报,2023,54(07):1064-1073.
Lu Hong-chao,Xia Zheng-hao,Mi Qin-yong,et al.Effect of Coagulation Bath Temperature on the Structure and Properties of Regenerated Cellulose Materials[J].ACTA POLYMERICA SINICA,2023,54(07):1064-1073.
卢洪超,夏钲豪,米勤勇等.凝固浴温度对再生纤维素材料结构与性能的影响研究[J].高分子学报,2023,54(07):1064-1073. DOI: 10.11777/j.issn1000-3304.2022.22396.
Lu Hong-chao,Xia Zheng-hao,Mi Qin-yong,et al.Effect of Coagulation Bath Temperature on the Structure and Properties of Regenerated Cellulose Materials[J].ACTA POLYMERICA SINICA,2023,54(07):1064-1073. DOI: 10.11777/j.issn1000-3304.2022.22396.
以1-烯丙基-3-甲基咪唑氯盐(AmimCl)离子液体为纤维素溶剂,水为凝固浴,通过调控凝固温度分别在不同凝固浴温度下获得再生纤维素气凝胶和再生纤维素膜,研究了再生纤维素气凝胶和再生纤维素膜的微观结构与性能的关系. 结果表明:凝固浴温度对再生纤维素气凝胶和再生纤维素膜的微观结构影响显著,进而影响再生纤维素气凝胶膜和再生纤维素膜的光学性能和力学性能,从而建立了凝固浴温度与再生纤维素材料结构和性能之间的关系,对以离子液体为溶剂的再生纤维素材料工业化生产具有一定的指导意义.
Using 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid as the cellulose solvent and water as the coagulation bath
regenerated cellulose aerogels and regenerated cellulose films were obtained at different coagulation bath temperatures by regulating the coagulation temperature
and the relationship between the microstructure and properties of regenerated cellulose aerogels and regenerated cellulose membranes was investigated. The results show that the coagulation bath temperature has a significant effect on the microstructure of regenerated cellulose aerogels and regenerated cellulose films
which in turn affects the optical and mechanical properties of regenerated cellulose aerogel films and regenerated cellulose films. When the coagulation bath temperature is low
the diffusion rate of ionic liquid into the coagulation bath is slow
the regeneration rate of cellulose solution is slow
and the structural difference between the surface and the interior of the cellulose hydrogel is smaller and denser. When the coagulation bath temperature is high
the diffusion rate of ionic liquid into the coagulation bath is faster
the regeneration rate of cellulose solution is faster
and the structural difference between the surface and the interior of the cellulose hydrogel is larger and looser. With the increase of the coagulation bath temperature
the pore size of the cellulose aerogel increases
the porosity increases
the specific surface area decreases
and more importantly
the surface pore size is obviously larger than the internal pore size
and this difference increases significantly with the increase of the coagulation bath temperature. The changes in the microstructure of the cellulose aerogel resulted in the decrease of its mechanical strength
Young's modulus
elongation at break and light transmission from 3.1 MPa
41.5 MPa
24.7% and 88.82% to 0.2 MPa
7.3 MPa
4.6% and 0.07%
respectively. However
with the increase of coagulation bath temperature
the crystallinity of regenerated cellulose film decreases and the surface roughness increases
its mechanical strength
Young's modulus and elongation at break decreased from 162.3 MPa
5389.8 MPa and 22.6% to 43.1 MPa
3923.4 MPa and 1.4%
respectively
while the light transmission was higher than 80% and the haze increased significantly up to 40%. Thus
the relationship between the coagulation bath temperature and the performance of the regenerated cellulose material was established
which is a guideline for the industrial production of regenerated cellulose material with ionic liquid as the solvent.
纤维素离子液体凝胶薄膜结构与性能
CelluloseIonic liquidsGelFilmStructure and performance
Tu H.; Zhu M. X.; Duan B.; Zhang L. N. Recent progress in high-strength and robust regenerated cellulose materials. Adv. Mater., 2021, 33(28), e2000682. doi:10.1002/adma.202000682http://dx.doi.org/10.1002/adma.202000682
Wang Q. Y.; Cai J.; Zhang L. N.; Xu M.; Cheng H.; Han C. C.; Kuga S.; Xiao J.; Xiao R. A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J. Mater. Chem. A, 2013, 1(22), 6678-6686. doi:10.1039/c3ta11130jhttp://dx.doi.org/10.1039/c3ta11130j
Mahmood H.; Moniruzzaman M.; Yusup S.; Welton T. Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chem., 2017, 19(9), 2051-2075. doi:10.1039/c7gc00318hhttp://dx.doi.org/10.1039/c7gc00318h
Tu H.; Xie K.; Ying D. F.; Luo L. B.; Liu X. Y.; Chen F.; Duan B.; Fu Q.; Zhang L. N. Green and economical strategy for spinning robust cellulose filaments. ACS Sustainable Chem. Eng., 2020, 8(39), 14927-14937. doi:10.1021/acssuschemeng.0c04890http://dx.doi.org/10.1021/acssuschemeng.0c04890
Cheng Y. X.; Tian W. G.; Mi Q. Y.; Zheng X. J.; Zhang J. Highly transparent all-polysaccharide composite films with tailored transmission haze for light manipulation. Adv. Mater. Technol., 2020, 2000378. doi:10.1002/admt.202000378http://dx.doi.org/10.1002/admt.202000378
许如梦, 张金明, 张军. 纤维素基刺激响应高分子材料研究进展. 高分子通报, 2018, (8), 119-124.
尹春春, 许如梦, 张金明, 宋广杰, 张军. 可热塑加工的纤维素材料研究进展. 高分子学报, 2022, 53(9), 1072-1082. doi:10.11777/j.issn1000-3304.2022.22183http://dx.doi.org/10.11777/j.issn1000-3304.2022.22183
Wang S.; Lu A.; Zhang L. N. Recent advances in regenerated cellulose materials. Prog. Polym. Sci., 2016, 53, 169-206. doi:10.1016/j.progpolymsci.2015.07.003http://dx.doi.org/10.1016/j.progpolymsci.2015.07.003
Nishiyama Y.; Asaadi S.; Ahvenainen P.; Sixta H. Water-induced crystallization and nano-scale spinodal decomposition of cellulose in NMMO and ionic liquid dope. Cellulose, 2019, 26(1), 281-289. doi:10.1007/s10570-018-2148-xhttp://dx.doi.org/10.1007/s10570-018-2148-x
Schestakow M.; Karadagli I.; Ratke L. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt. Carbohydr. Polym., 2016, 137, 642-649. doi:10.1016/j.carbpol.2015.10.097http://dx.doi.org/10.1016/j.carbpol.2015.10.097
Mao Y.; Zhou J. P.; Cai J.; Zhang L. N. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution. J. Membr. Sci., 2006, 279(1-2), 246-255. doi:10.1016/j.memsci.2005.07.048http://dx.doi.org/10.1016/j.memsci.2005.07.048
Rosenau T.; Potthast A.; Sixta H.; Kosma P. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog. Polym. Sci., 2001, 26(9), 1763-1837. doi:10.1016/s0079-6700(01)00023-5http://dx.doi.org/10.1016/s0079-6700(01)00023-5
Ramos L. A.; Morgado D. L.; El Seoud O. A.; da Silva V. C.; Frollini E. Acetylation of cellulose in LiCl-N, N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose, 2011, 18(2), 385-392. doi:10.1021/acs.macromol.7b01594http://dx.doi.org/10.1021/acs.macromol.7b01594
Hedlund A.; Köhnke T.; Theliander H. Diffusion in ionic liquid-cellulose solutions during coagulation in water: mass transport and coagulation rate measurements. Macromolecules, 2017, 8707-8719. doi:10.1021/acs.macromol.7b01594http://dx.doi.org/10.1021/acs.macromol.7b01594
Ghasemi M.; Tsianou M.; Alexandridis P. Assessment of solvents for cellulose dissolution. Bioresour. Technol., 2017, 228, 330-338. doi:10.1016/j.biortech.2016.12.049http://dx.doi.org/10.1016/j.biortech.2016.12.049
Durmaz E. N.; Zeynep Çulfaz-Emecen P. Cellulose-based membranes via phase inversion using [EMIM]OAc-DMSO mixtures as solvent. Chem. Eng. Sci., 2018, 178, 93-103. doi:10.1016/j.ces.2017.12.020http://dx.doi.org/10.1016/j.ces.2017.12.020
Geng H. J. A facile approach to light weight, high porosity cellulose aerogels. Int. J. Biol. Macromol., 2018, 118, 921-931. doi:10.1016/j.ijbiomac.2019.06.157http://dx.doi.org/10.1016/j.ijbiomac.2019.06.157
Ilyin S. O.; Makarova V. V.; Anokhina T. S.; Ignatenko V. Y.; Brantseva T. V.; Volkov A. V.; Antonov S. V. Diffusion and phase separation at the morphology formation of cellulose membranes by regeneration from N-methylmorpholine N-oxide solutions. Cellulose, 2018, 25(4), 2515-2530. doi:10.1007/s10570-018-1756-9http://dx.doi.org/10.1007/s10570-018-1756-9
Li R.; Zhang L. N.; Xu M. Novel regenerated cellulose films prepared by coagulating with water: structure and properties. Carbohydr. Polym., 2012, 87(1), 95-100. doi:10.1016/j.carbpol.2011.07.023http://dx.doi.org/10.1016/j.carbpol.2011.07.023
Pang J. H.; Wu M.; Zhang Q. H.; Tan X.; Xu F.; Zhang X. M.; Sun R. C. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr. Polym., 2015, 121, 71-78. doi:10.1016/j.carbpol.2014.11.067http://dx.doi.org/10.1016/j.carbpol.2014.11.067
Liu Z. H.; Sun X. F.; Hao M. Y.; Huang C. Y.; Xue Z. M.; Mu T. C. Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydr. Polym., 2015, 117, 99-105. doi:10.1016/j.carbpol.2014.09.053http://dx.doi.org/10.1016/j.carbpol.2014.09.053
Druel L.; Niemeyer P.; Milow B.; Budtova T. Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chem., 2018, 20(17), 3993-4002. doi:10.1039/c8gc01189chttp://dx.doi.org/10.1039/c8gc01189c
Lopes J. M.; Mustapa A. N.; Pantić M.; Bermejo M. D.; Martín Á.; Novak Z.; Knez Ž.; Cocero M. J. Preparation of cellulose aerogels from ionic liquid solutions for supercritical impregnation of phytol. J. Supercrit. Fluids, 2017, 130, 17-22. doi:10.1016/j.supflu.2017.07.018http://dx.doi.org/10.1016/j.supflu.2017.07.018
万纪强, 张金明, 郑学晶, 贾锋伟, 余坚, 张军. 用于锂离子电池的阻燃型纤维素基复合气凝胶膜. 高分子学报, 2020, 51(8), 933-941. doi:10.11777/j.issn1000-330.2020.20081http://dx.doi.org/10.11777/j.issn1000-330.2020.20081
张金明, 武进, 余坚, 张晓程, 米勤勇, 张军. 高分子学报, 2017, (7), 1058-1072. doi:10.11777/j.issn1000-3304.2017.17066http://dx.doi.org/10.11777/j.issn1000-3304.2017.17066
Wan J. Q.; Diao H. L.; Yu J.; Song G. J.; Zhang J. A biaxially stretched cellulose film prepared from ionic liquid solution. Carbohydr. Polym., 2021, 260, 117816. doi:10.1016/j.carbpol.2021.117816http://dx.doi.org/10.1016/j.carbpol.2021.117816
Hedlund A.; Köhnke T.; Hagman J.; Olsson U.; Theliander H. Microstructures of cellulose coagulated in water and alcohols from 1acetate-ethyl-3-methylimidazolium: contrasting coagulation mechanisms. Cellulose, 2019, 26(3), 1545-1563. doi:10.1007/s10570-018-2168-6http://dx.doi.org/10.1007/s10570-018-2168-6
Zheng X.; Huang F.; Chen L. H.; Huang L. L.; Cao S. L.; Ma X. J. Preparation of transparent film via cellulose regeneration: correlations between ionic liquid and film properties. Carbohydr. Polym., 2019, 203, 214-218. doi:10.1016/j.carbpol.2018.09.060http://dx.doi.org/10.1016/j.carbpol.2018.09.060
Tan X. Y.; Chen L.; Li X. X.; Xie F. W. Effect of anti-solvents on the characteristics of regenerated cellulose from 1-ethyl-3-methylimidazolium acetate ionic liquid. Int. J. Biol. Macromol., 2019, 124, 314-320. doi:10.1016/j.ijbiomac.2018.11.138http://dx.doi.org/10.1016/j.ijbiomac.2018.11.138
Sun L. F.; Chen J. Y.; Jiang W.; Lynch V. Crystalline characteristics of cellulose fiber and film regenerated from ionic liquid solution. Carbohydr. Polym., 2015, 118, 150-155. doi:10.1016/j.carbpol.2014.11.008http://dx.doi.org/10.1016/j.carbpol.2014.11.008
Liu X.; Pang J. H.; Zhang X. M.; Wu Y. Y.; Sun R. C. Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc). Cellulose, 2013, 20(3), 1391-1399. doi:10.1007/s10570-013-9925-3http://dx.doi.org/10.1007/s10570-013-9925-3
Talley S. J.; Vivod S. L.; Nguyen B. A.; Meador M. A. B.; Radulescu A.; Moore R. B. Hierarchical morphology of poly(ether ether ketone) aerogels. ACS Appl. Mater. Interfaces, 2019, 11(34), 31508-31519. doi:10.1021/acsami.9b09699http://dx.doi.org/10.1021/acsami.9b09699
Alothman Z. Fundamental aspects of silicate mesoporous materials. Materrials, 2012, 5(12), 2874-2902. doi:10.3390/ma5122874http://dx.doi.org/10.3390/ma5122874
Wei P. D.; Huang J. C.; Lu Y.; Zhong Y.; Men Y. F.; Zhang L. N.; Cai J. Unique stress whitening and high-toughness double-cross-linked cellulose films. ACS Sustainable Chem. Eng., 2019, 7(1), 1707-1717. doi:10.1021/acssuschemeng.8b05485http://dx.doi.org/10.1021/acssuschemeng.8b05485
0
Views
91
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution