浏览全部资源
扫码关注微信
江西理工大学化学化工学院 赣州 341000
Shi-yong Liu, E-mail: chelsy@jxust.edu.cn
Published:20 July 2023,
Published Online:22 February 2023,
Received:21 November 2022,
Accepted:27 December 2022
扫 描 看 全 文
刘慧,陈妍,陈娜等.C―H键直接芳基化合成共轭长度连续递增的氯代低聚物非富勒烯受体[J].高分子学报,2023,54(07):1122-1130.
Liu Hui,Chen Yan,Chen Na,et al.Stepwise Extended π-Conjugation Lengths of Chlorinated Oligomeric Non-fullerene Acceptors Accessed via Direct C―H Arylation[J].ACTA POLYMERICA SINICA,2023,54(07):1122-1130.
刘慧,陈妍,陈娜等.C―H键直接芳基化合成共轭长度连续递增的氯代低聚物非富勒烯受体[J].高分子学报,2023,54(07):1122-1130. DOI: 10.11777/j.issn1000-3304.2022.22398.
Liu Hui,Chen Yan,Chen Na,et al.Stepwise Extended π-Conjugation Lengths of Chlorinated Oligomeric Non-fullerene Acceptors Accessed via Direct C―H Arylation[J].ACTA POLYMERICA SINICA,2023,54(07):1122-1130. DOI: 10.11777/j.issn1000-3304.2022.22398.
受体材料的低成本合成对于有机光电器件的实用化具有重要意义. 通过原子及步骤经济的C―H键直接芳基化反应(DACH)合成了一系列A-D-A型共轭长度逐步递增的氯取代的低聚物非稠合电子受体(DFPC-2Cl-
n
(
n
= 1~3)),系统研究了光电化学性质和器件性能与共轭长度之间的构-效关系. 同时,在端基引入氯原子,可有效降低最高分子占有轨道(HOMO)能级. 研究发现,DFPC-2Cl-2表现出最高的PCE (7.55%),主要归因于开路电压(
V
OC
),短路电流密度(
J
SC
)和填充因子(FF)的改善,表明氯化端基作为一种低成本方法,可有效调节光电性质并同时增强
V
OC
,
J
SC
和FF. 本文中所发展的C―H键直接芳基化反应可有效调节
π
-共轭长度,从而实现高性能非富勒烯受体的高效率筛选.
Low-cost and efficient synthesis of acceptors plays a key role in the commercialization of organic optoelectronic devices. So far
the unfused-ring acceptors (UFRAs) with chlorine terminal groups has rarely been reported in the past years. In this work
a series of A-D-A type chlorinated oligomeric UFRAs with the stepwise extension of
π
-conjugation lengths (DFPC-2Cl-
n
(
n
= 1‒3)) are designed and successfully synthesized
via
direct C―H arylation. The conjugation length dependence of optoelectronic properties and photovoltaic performances have been systematically investigated
revealing that DFPC-2Cl-2 achieves the highest power conversion efficiency (7.55%) due to the significantly enhanced open voltage (
V
OC
)
short current (
J
SC
)
and fill factor (FF). The broadest and highest EQE and suitable BHJ morphology of DFPC-2Cl-2-based OSC enabled the highest
J
SC
and FF among the three UFRAs. The combination of chlorine terminal group with the regulated
π
-conjugation lengths can finely tune the frontier molecular orbital (FMO) levels to obtain new-type oligomeric UFRAs with the elevated
V
OC
J
SC
and FF. The current work demonstrates that direct C―H arylation is a robust and atom-economic strategy to tailor the
π
-conjugation lengths of UFRAs
which will provide a guidance for the design
synthesis and screening of high-performance non-fullerene acceptors for organic solar cell applications.
有机太阳能电池低聚物非稠合电子受体氯取代原子及步骤经济C―H键直接芳基化
Organic solar cellOligomeric unfused electron acceptorsChloric substituentAtom- and step-economyC―H direct arylation
Wadsworth A.; Hamid Z.; Kosco J.; Gasparini N.; McCulloch I. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater., 2020, 32(38), 2001763. doi:10.1002/adma.202001763http://dx.doi.org/10.1002/adma.202001763
Fukuda K.; Yu K.; Someya T. The future of flexible organic solar cells. Adv. Energy Mater., 2020, 10(25), 2000765. doi:10.1002/aenm.202000765http://dx.doi.org/10.1002/aenm.202000765
Zhou Y.; Zhang W.; Yu G. Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells. Chem. Sci., 2021, 12, 6844-6878. doi:10.1039/d1sc01711jhttp://dx.doi.org/10.1039/d1sc01711j
Ameri T.; Khoram P.; Min J.; Brabec C. Organic ternary solar cells. Adv. Mater., 2013, 25(31), 4245-4266. doi:10.1002/adma.201300623http://dx.doi.org/10.1002/adma.201300623
Chen H.; Zhang R.; Chen X.; Zeng G.; Kobera L.; Abbrent S.; Zhang B.; Chen W.; Xu G.; Oh J.; Kang S. H.; Chen S.; Yang C.; Brus J.; Hou J.; Gao F.; Li Y.; Li Y. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy, 2021, 6, 1045-1053. doi:10.1038/s41560-021-00923-5http://dx.doi.org/10.1038/s41560-021-00923-5
Zeng G.; Chen W.; Chen X.; Hu Y.; Chen Y.; Zhang B.; Chen H.; Sun W.; Shen Y.; Li Y.; Yan F.; Li Y. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc., 2022, 144(19), 8658-8668. doi:10.1021/jacs.2c01503http://dx.doi.org/10.1021/jacs.2c01503
Zhang B.; Yang F.; Chen S.; Chen H.; Zeng G.; Shen Y.; Li Y.; Li Y. Fluid mechanics inspired sequential blade-coating for high-performance large-area organic solar modules. Adv. Funct. Mater. 2022, 32(29), 2202011. doi:10.1002/adfm.202202011http://dx.doi.org/10.1002/adfm.202202011
Chen X.; Xu G.; Zeng G.; Gu H.; Chen H.; Xu H.; Yao H.; Li Y.; Hou J.; Li Y. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 2020, 32(14), 1908478. doi:10.1002/adma.201908478http://dx.doi.org/10.1002/adma.201908478
Sun W.; Chen H.; Zhang B.; Cheng Q.; Yang H.; Chen Z.; Zeng G.; Ding J.; Chen W.; Lia Y. Host-guest active layer enabling annealing annealing-free, nonhalogenated green solvent processing for high high-performance organic solar cells. Chin. J. Chem. 2022, 40(24), 2963-2972. doi:10.1002/cjoc.202200437http://dx.doi.org/10.1002/cjoc.202200437
Gu C.; Wang X.; Wang H.; Tian Y.; Ma J.; Yang R. Recent advances in small molecular design for high performance non-fullerene organic solar cells. Mol. Syst. Des. Eng., 2022, 7, 832-855. doi:10.1039/d2me00068ghttp://dx.doi.org/10.1039/d2me00068g
Zhang G.; Lin F. R.; Qi F.; Heumüller T.; Distler A.; Egelhaaf H. J.; Li N.; Chow P. C. Y.; Brabec C. J.; Jen A. K. Y.; Yip H. L. Renewed prospects for organic photovoltaics. Chem. Rev., 2022, 122(18), 14180-14274. doi:10.1021/acs.chemrev.1c00955http://dx.doi.org/10.1021/acs.chemrev.1c00955
Lin Y.; Wang J.; Zhang Z. G.; Bai H.; Li Y.; Zhu D.; Zhan X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater., 2015, 27(7), 1170-1174. doi:10.1002/adma.201404317http://dx.doi.org/10.1002/adma.201404317
Yuan J.; Zhang Y.; Zhou L.; Zhang G.; Yip H. L.; KiLau T.; Lu X.; Zhu C.; Peng H.; Johnson P. A.; Leclerc M.; Cao Y.; Ulanski J.; Li Y.; Zou Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Lin Y.; He Q.; Zhao F.; Huo L.; Mai J.; Lu X.; Su C. J.; Li T.; Wang J.; Zhu J.; Sun Y.; Wang C.; Zhan X. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J. Am. Chem. Soc., 2016, 138(9), 2973-2976. doi:10.1021/jacs.6b00853http://dx.doi.org/10.1021/jacs.6b00853
Ma Y.; Cai D.; Wan S.; Wang P.; Wang J.; Zheng Q. Ladder-type heteroheptacenes with different heterocycles for nonfullerene acceptors. Angew. Chem. Int. Ed., 2020, 132(48), 21811-21817. doi:10.1002/ange.202007907http://dx.doi.org/10.1002/ange.202007907
Wang Z.; Cai G.; Wang J.; Li M.; Jia B.; Xue P.; Lu X.; Tang Z.; Wang G.; Zhan X. Effect of molecular symmetry on fused-ring electron acceptors. Solar RRL, 2022, 6(8), 2100797. doi:10.1002/solr.202100797http://dx.doi.org/10.1002/solr.202100797
崔超华. 有机光伏材料的分子设计与器件性能研究. 高分子学报, 2021, 52(6), 663-678. doi:10.11777/j.issn1000-3304.2021.21068http://dx.doi.org/10.11777/j.issn1000-3304.2021.21068
柯鑫, 孟令贤, 万相见, 张昕, 常美佳, 李晨曦, 陈永胜. 基于引达省并二噻吩吡喃的稠环受体材料的设计合成及其在有机太阳能电池中的应用研究. 高分子学报, 2020, 51(2), 148-157. doi:10.11777/j.issn1000-3304.2019.19131http://dx.doi.org/10.11777/j.issn1000-3304.2019.19131
Yao H.; Wang J.; Xu Y.; Zhang S.; Hou J. Recent progress in chlorinated organic photovoltaic materials. Acc. Chem. Res., 2020, 53(4), 822-832. doi:10.1021/acs.accounts.0c00009http://dx.doi.org/10.1021/acs.accounts.0c00009
Zhang Q.; Kelly M. A.; Bauer N.; You W. The curious case of fluorination of conjugated polymers for solar cells. Acc. Chem. Res., 2017, 50(9), 2401-2409. doi:10.1021/acs.accounts.7b00326http://dx.doi.org/10.1021/acs.accounts.7b00326
Brown J. M.; Gouverneur V. Transition-metal-mediated reactions for Csp2 construction-Fbond: the state of play. Angew. Chem. Int. Ed., 2009, 48(46), 8610-8614. doi:10.1002/anie.200902121http://dx.doi.org/10.1002/anie.200902121
Zhang S.; Qin Y.; Zhu J.; Hou J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater., 2018, 30(20), 1800868. doi:10.1002/adma.201800868http://dx.doi.org/10.1002/adma.201800868
Tang M. L.; Bao Z. Halogenated materials as organic semiconductors. Chem. Mater., 2011, 23(3), 446-455. doi:10.1021/cm102182xhttp://dx.doi.org/10.1021/cm102182x
Yang F.; Li C.; Lai W.; Zhang A.; Huang H.; Li W. Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Mater. Chem. Front., 2017, 1, 1389-1395. doi:10.1039/c7qm00025ahttp://dx.doi.org/10.1039/c7qm00025a
Zhao Q.; Qu J.; He F. Chlorination: an effective strategy for high-performance organic solar cells. Adv. Sci., 2020, 7(14), 2000509. doi:10.1002/advs.202000509http://dx.doi.org/10.1002/advs.202000509
Qu J.; Chen H.; Zhou J.; Lai H.; Liu T.; Chao P.; Li D.; Xie Z.; He F.; Ma Y. Chlorine atom-induced molecular interlocked network in a non-fullerene acceptor. ACS Appl. Mater. Interfaces, 2018, 10(46), 39992-40000. doi:10.1021/acsami.8b15923http://dx.doi.org/10.1021/acsami.8b15923
Liu G.; Jia T.; Zhang K.; Jia J.; Yin Q.; Zhong W.; Jia X.; Zheng N.; Ying L.; Huang F.; Cao Y. Chlorinated fused nonacyclic non-fullerene acceptor enables efficient large-area polymer solar cells with high scalability. Chem. Mater., 2020, 32(3), 1022-1030. doi:10.1021/acs.chemmater.9b03694http://dx.doi.org/10.1021/acs.chemmater.9b03694
Huang H.; Yang L.; Facchetti A.; Marks T. J. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev., 2017, 117(15), 10291-10318. doi:10.1021/acs.chemrev.7b00084http://dx.doi.org/10.1021/acs.chemrev.7b00084
Liu Y.; Song J.; Bo Z. Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions. Chem. Commun., 2021, 57, 302-314. doi:10.1039/d0cc07086fhttp://dx.doi.org/10.1039/d0cc07086f
Cao J.; Wang H.; Yang L.; Du F.; Yu J.; Tang W. Chlorinated unfused acceptor enabling 13.57% efficiency and 73.39% fill factor organic solar cells via fine-tuning alkoxyl chains on benzene core. Chem. Eng. J., 2022, 427(1), 131828.
Zhu J.; Shao Z.; Wang J.; Sun D.; Zhu M.; Song X.; Tan H.; Zhu W. Non-fused-ring asymmetrical electron acceptors assembled by multi-functional alkoxy indenothiophene unit to construct efficient organic solar cells. Chem. Eng. J., 2022, 444(15), 136509. doi:10.1016/j.cej.2022.136509http://dx.doi.org/10.1016/j.cej.2022.136509
Carsten B.; He F.; Son H. J.; Xu T.; Yu L. Stille polycondensation for synthesis of functional materials. Chem. Rev., 2011, 111(3), 1493-1528. doi:10.1021/cr100320whttp://dx.doi.org/10.1021/cr100320w
Osedach T. P.; Andrew T. L., Bulovic V. Effect of synthetic accessibility on the commercial viability of organic photovoltaics. Energy Environ. Sci., 2013, 6, 711-718. doi:10.1039/c3ee24138fhttp://dx.doi.org/10.1039/c3ee24138f
Burke D. J.; Lipomi D. J. Green chemistry for organic solar cells. Energy Environ. Sci., 2013, 6, 2053-2066. doi:10.1039/c3ee41096jhttp://dx.doi.org/10.1039/c3ee41096j
Stuart D. R.; Fagnou K. The catalytic cross-coupling of unactivated arenes. Science, 2007, 316(5828), 1172-1175. doi:10.1126/science.1141956http://dx.doi.org/10.1126/science.1141956
Bergman, R. G. C―H activation. Nature, 2007, 446, 391-393. doi:10.1038/446391ahttp://dx.doi.org/10.1038/446391a
Tang R. Y.; Li G.; Yu J. Q. Conformation-induced remote meta-C―H activation of amines. Nature, 2014, 507, 215-220. doi:10.1038/nature12963http://dx.doi.org/10.1038/nature12963
Liu S. Y.; Shi M. M.; Huang J. C.; Jin Z. N.; Hu X. L.; Pan J. Y.; Li H. Y.; Jen K. Y. A.; Chen H. C―H activation: making diketopyrrolopyrrole derivatives easily accessible. J. Mater. Chem. A, 2013, 1, 2795-2805. doi:10.1039/c2ta01318ehttp://dx.doi.org/10.1039/c2ta01318e
Okamoto K.; Zhang J.; Housekeeper J. B.; Marder S. R.; Luscombe C. K. C―H Arylation reaction: atom efficient and greener syntheses of π-conjugated small molecules and macromolecules for organic electronic materials. Macromolecules, 2013, 46(20), 8059-8078. doi:10.1021/ma401190rhttp://dx.doi.org/10.1021/ma401190r
Bura T.; Beaupre S.; Legare M.-A.; Quinn J.; Rochette E.; Blaskovits J. T.; Fontaine F. G.; Pron A.; Li Y.; Leclerc M. Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers. Chem. Sci., 2017, 8, 3913-3925. doi:10.1039/c7sc00589jhttp://dx.doi.org/10.1039/c7sc00589j
Pouliot J. R.; Grenier F.; Blaskovits J. T.; Beaupre S.; Leclerc M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev., 2016, 116(22), 14225-14274. doi:10.1021/acs.chemrev.6b00498http://dx.doi.org/10.1021/acs.chemrev.6b00498
Gobalasingham N. S.; Thompson B. C. Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers. Prog. Polym. Sci., 2018, 83, 135-201. doi:10.1016/j.progpolymsci.2018.06.002http://dx.doi.org/10.1016/j.progpolymsci.2018.06.002
Tan Z. R.; Xing Y. Q.; Cheng J. Z.; Zhang G.; Shen Z. Q.; Zhang Y. J.; Liao G.; Chen L.; Liu S. Y. EDOT-based conjugated polymers accessed via C―H direct arylation for efficient photocatalytic hydrogen production. Chem. Sci., 2022, 13, 1725-1733. doi:10.1039/d1sc05784ghttp://dx.doi.org/10.1039/d1sc05784g
Huang W. Y.; Shen Z. Q.; Cheng J. Z.; Liu L. L.; Yang K.; Chen X.; Wen H. R.; Liu S. Y. C―H activation derived CPPs for photocatalytic hydrogen production excellently accelerated by a DMF cosolvent. J. Mater. Chem. A, 2019, 7, 24222-24230. doi:10.1039/c9ta06444chttp://dx.doi.org/10.1039/c9ta06444c
耿延候, 睢颖. 高迁移率共轭聚合物的直接芳基化缩聚合成. 高分子学报, 2019, 50(2), 109-117. doi:10.11777/j.issn1000-3304.2018.18231http://dx.doi.org/10.11777/j.issn1000-3304.2018.18231
Alberico D.; Scott M. E.; Lautens M. Aryl-Aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev., 2007, 107(1), 174-238. doi:10.1021/cr0509760http://dx.doi.org/10.1021/cr0509760
Chen N.; Yang L. J.; Chen Y.; Wu Y.; Huang X. M.; Liu H.; Xie H. Y.; Hu L.; Li Z.; Liu S. Y. PBDB-T accessed via direct C―H arylation polymerization for organic photovoltaic application. ACS Appl. Polym. Mater. 2022, 4(10), 7282-7289. doi:10.1021/acsapm.2c01113http://dx.doi.org/10.1021/acsapm.2c01113
Mainville, M.; Leclerc, M. Direct (hetero)arylation: a tool for low-cost and eco-friendly organic photovoltaics. ACS Appl. Polym. Mater., 2021, 3(1), 2-13. doi:10.1021/acsapm.0c00883http://dx.doi.org/10.1021/acsapm.0c00883
Liang Y.; Zhang D.; Wu Z.; Jia T.; Lüer L.; Tang H.; Hong L.; Zhang J.; Zhang K.; Brabec C. J.; Li N.; Huang F. Organic solar cells using oligomer acceptors for improved stability and efficiency. Nat. Energy, 2022, 7, 1180-1190. doi:10.1038/s41560-022-01155-xhttp://dx.doi.org/10.1038/s41560-022-01155-x
Zhou C.; Liang Y.; Liu F.; Sun C.; Huang X.; Xie Z.; Huang F.; Roncali J.; Russell T. P.; Cao Y. Chain length dependence of the photovoltaic properties of monodisperse donor-acceptor oligomers as model compounds of polydisperse low band gap polymers. Adv. Funct. Mater., 2014, 24, 7538-7547. doi:10.1002/adfm.201401945http://dx.doi.org/10.1002/adfm.201401945
Wang L. H.; Chen X. J.; Ye D. N.; Liu H.; Chen Y.; Zhong A. G.; Li C. Z.; Liu S. Y. Pot- and atom-economic synthesis of oligomeric non-fullerene acceptors via C―H direct arylation. Polym. Chem., 2022, 13, 2351-2361. doi:10.1039/d2py00139jhttp://dx.doi.org/10.1039/d2py00139j
阚斌, 万相见, 李晨曦, 陈永胜. 寡聚物型A-D-A结构高效有机太阳能电池材料与器件. 高分子学报, 2021, 52(10), 1262-1282. doi:10.11777/j.issn1000-3304.2021.21088http://dx.doi.org/10.11777/j.issn1000-3304.2021.21088
Liu S. Y.; Cheng J. Z.; Zhang X. F.; Liu H.; Shen Z. Q.; Wen H. R. Single-step access to a series of D—A π-conjugated oligomers with 3‒10 nm chain lengths. Polym. Chem., 2019, 10, 325-330. doi:10.1039/c8py01478ghttp://dx.doi.org/10.1039/c8py01478g
Liu H.; Zhang X. F.; Wang L. H.; Chen Y.; Ye D. N.; Chen L.; Wen H. R.; Liu S. Y. One-pot synthesis of 3- to 15-mer π-conjugated discrete oligomers with widely tunable optical properties. Chin. J. Chem., 2021, 39(3), 577-584. doi:10.1002/cjoc.202000457http://dx.doi.org/10.1002/cjoc.202000457
Liu H.; Tao Y. D., Wang L. H.; Ye D. N.; Huang X. M.; Chen N.; Li C. Z.; Liu S. Y. C―H direct arylation: a robust tool to tailor the π-conjugation lengths of non-fullerene acceptors. Chem. Sus. Chem., 2022, 15(11), e202200034. doi:10.1002/cssc.202200034http://dx.doi.org/10.1002/cssc.202200034
0
Views
41
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution