浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 中国科学院生态环境高分子材料重点实验室 长春 130022
2.中国科学技术大学应用化学与工程学院 合肥 230026
Published:20 May 2023,
Published Online:13 February 2023,
Received:24 November 2022,
Accepted:05 January 2023
扫 描 看 全 文
朱真逸,宋万通,陈学思.高分子免疫佐剂材料[J].高分子学报,2023,54(05):534-549.
Zhu Zhen-yi,Song Wan-tong,Chen Xue-si.Polymeric Immune Adjuvant Materials[J].ACTA POLYMERICA SINICA,2023,54(05):534-549.
朱真逸,宋万通,陈学思.高分子免疫佐剂材料[J].高分子学报,2023,54(05):534-549. DOI: 10.11777/j.issn1000-3304.2022.22403.
Zhu Zhen-yi,Song Wan-tong,Chen Xue-si.Polymeric Immune Adjuvant Materials[J].ACTA POLYMERICA SINICA,2023,54(05):534-549. DOI: 10.11777/j.issn1000-3304.2022.22403.
佐剂是一种添加到疫苗中,使疫苗能够非特异性地增强机体对抗原的特异性免疫应答的物质,是疫苗和免疫治疗的重要组分. 为了解决当前市场上小分子和生物制剂佐剂靶向性差、系统暴露度高、生物毒性强等问题,具有免疫刺激活性和生物安全性的高分子材料正在成为免疫佐剂领域的研究热点. 在本专论中,我们回顾了近年来发现的具有免疫刺激活性的天然来源或人工合成的高分子佐剂材料,并介绍了用来担载或键合小分子佐剂的高分子材料. 提出了“高分子免疫佐剂材料”这一概念,并指出,高分子免疫佐剂材料不仅能够本身作为模式识别受体激动剂而激活免疫系统,具有相比于小分子佐剂更加安全可控的优势,并且可以与小分子佐剂以物理包埋或化学键合的方式相结合,控制抗原和小分子佐剂的体内传输与释放行为,进而增强免疫系统的响应. 希望通过本专论的讨论,可以进一步明确对高分子免疫佐剂材料的理解,推动疫苗与免疫治疗这一新兴技术领域的发展.
Adjuvants are substances added to vaccines to enhance the specific immune response to antigens in a non-specific way
and are important components of vaccines and immunotherapy. In order to solve the problems of poor targeting
high systemic exposure and biological toxicity of the currently marketed adjuvants including small molecules and biologics
polymeric materials with immunostimulatory activity and biosafety are becoming a hot research topic. In this feature article
we reviewed polymeric adjuvant materials of natural or synthetic origin that had been discovered in recent years with immunostimulatory activity
as well as polymeric materials used to encapsulate or conjugate with small molecule adjuvants. We proposed the concept of "polymeric immune adjuvant materials"
and pointed out that polymeric immune adjuvant materials not only can act as pattern recognition receptor agonists to activate the immune system with a safer and more controllable manner than small molecule adjuvants
but also can be combined with small molecule adjuvants in a physically encapsulated or chemically bonded manner to control the
in vivo
delivery and release behavior of the antigen and small molecule adjuvants
thus enhancing the immune responses. We hope the discussion in this feature article could help the understanding of polymeric immune adjuvant materials and promote the further development of immunotherapy and vaccines.
免疫治疗疫苗佐剂高分子生物医用材料
ImmunotherapyVaccinesAdjuvantsPolymersBiomedical materials
Coffman R. L.; Sher A.; Seder R. A. Vaccine adjuvants: putting innate immunity to work. Immunity, 2010, 33(4), 492-503. doi:10.1016/j.immuni.2010.10.002http://dx.doi.org/10.1016/j.immuni.2010.10.002
McKee A. S.; Munks M. W.; Marrack P. How do adjuvants work? Important considerations for new generation adjuvants. Immunity, 2007, 27(5), 687-690. doi:10.1016/j.immuni.2007.11.003http://dx.doi.org/10.1016/j.immuni.2007.11.003
Podda A. The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine, 2001, 19(17-19), 2673-2680. doi:10.1016/s0264-410x(00)00499-0http://dx.doi.org/10.1016/s0264-410x(00)00499-0
Christensen D. Vaccine adjuvants: why and how. Hum. Vaccin. Immunother., 2016, 12(10), 2709-2711. doi:10.1080/21645515.2016.1219003http://dx.doi.org/10.1080/21645515.2016.1219003
Zhang L.; Eisenberg A. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc., 1996, 118(13), 3168-3181. doi:10.1021/ja953709shttp://dx.doi.org/10.1021/ja953709s
Shen H.; Eisenberg A. Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/dioxane/H2O. J. Phys. Chem. B, 1999, 103(44), 9473-9487. doi:10.1021/jp991365chttp://dx.doi.org/10.1021/jp991365c
Kukula H.; Schlaad H.; Antonietti M.; Förster S. The formation of polymer vesicles or "peptosomes" by polybutadiene-block-poly(L-glutamate)s in dilute aqueous solution. J. Am. Chem. Soc., 2002, 124(8), 1658-1663. doi:10.1021/ja012091lhttp://dx.doi.org/10.1021/ja012091l
Théry C.; Ostrowski M.; Segura E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol., 2009, 9(8), 581-593. doi:10.1038/nri2567http://dx.doi.org/10.1038/nri2567
Avery O. T.; Goebel W. F. Chemoimmunological studies on the soluble specific substance of pneumococcus: I. the isolation and properties of the acetyl polysaccharide of pneumococcus type. J. Exp. Med., 1933, 58(6), 731-755. doi:10.1084/jem.58.6.731http://dx.doi.org/10.1084/jem.58.6.731
Tillett W. S.; Goebel W. F.; Avery O. T. Chemical and immunological properties of a species-specific carbohydrate of pneumococci. J. Exp. Med., 1930, 52(6), 895-900. doi:10.1084/jem.52.6.895http://dx.doi.org/10.1084/jem.52.6.895
Scherr G. H.; Markowitz A. S.; Skelton L. A new alginate adjuvant. J. Appl. Bacteriol., 1965, 28(1), 174-180. doi:10.1111/j.1365-2672.1965.tb02140.xhttp://dx.doi.org/10.1111/j.1365-2672.1965.tb02140.x
Benet L. Z.; Bhatia V.; Singh P.; Guillory J. K.; Sokoloski T. D. Effect of inert tablet ingredients on drug absorption. I. Effect of polyethylene glycol 4000 on the intestinal absorption of four barbiturates. J. Pharm. Sci., 1966, 55(1), 63-68.
Stuart M. A.; Huck W. T.; Genzer J.; Müller M.; Ober C.; Stamm M.; Sukhorukov G. B.; Szleifer I.; Tsukruk V. V.; Urban M.; Winnik F.; Zauscher S.; Luzinov I.; Minko S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9(2), 101-113. doi:10.1038/nmat2614http://dx.doi.org/10.1038/nmat2614
Steeves M. A.; Marion T. N. Tolerance to DNA in (NZB × NZW)F1 mice that inherit an anti-DNA VH as a conventional μ H chain transgene but not as a VH knock-in transgene. J. Immunol., 2004, 172(11), 6568-6577. doi:10.4049/jimmunol.172.11.6568http://dx.doi.org/10.4049/jimmunol.172.11.6568
Stewart-Tull D. E.; Shimono T.; Kotani S.; Kato M.; Ogawa Y.; Yamamura Y.; Koga T.; Pearson C. M. The adjuvant activity of a non-toxic, water-soluble glycopeptide present in large quantities in the culture filtrate of Mycobacterium tuberculosis strain DT. Immunology, 1975, 29(1), 1-15.
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol., 1994, 12, 991-1045. doi:10.1146/annurev.iy.12.040194.005015http://dx.doi.org/10.1146/annurev.iy.12.040194.005015
Bell D.; Young J. W.; Banchereau J. Dendritic cells. Adv. Immunol., 1999, 72255-324. doi:10.1016/s0065-2776(08)60023-1http://dx.doi.org/10.1016/s0065-2776(08)60023-1
Kawai T.; Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384. doi:10.1038/ni.1863http://dx.doi.org/10.1038/ni.1863
Schroeder H. W., Jr.; Cavacini L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol., 2010, 125(2), S348. doi:10.1016/j.jaci.2009.09.046http://dx.doi.org/10.1016/j.jaci.2009.09.046
Nevagi R. J.; Skwarczynski M.; Toth I. Polymers for subunit vaccine delivery. Eur. Polym. J., 2019, 114, 397-410. doi:10.1016/j.eurpolymj.2019.03.009http://dx.doi.org/10.1016/j.eurpolymj.2019.03.009
Bachmann M. F.; Jennings G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol., 2010, 10(11), 787-796. doi:10.1038/nri2868http://dx.doi.org/10.1038/nri2868
Byars N.; Allison A. Immunologic adjuvants: general properties, advantages, and limitations. Laboratory Methods in Immunol., 1990, 39-51. doi:10.1016/b978-0-12-466460-9.50010-9http://dx.doi.org/10.1016/b978-0-12-466460-9.50010-9
van Rooijen, N.; van Nieuwmegen, R. [6]Use of liposomes as biodegradable and harmless adjuvants. Meth. Enzymol. Elsevier: 1983, 93, 83-95. doi:10.1016/s0076-6879(83)93036-7http://dx.doi.org/10.1016/s0076-6879(83)93036-7
Zhao L.; Seth A.; Wibowo N.; Zhao C. X.; Mitter N.; Yu C.; Middelberg A. P. Nanoparticle vaccines. Vaccine, 2014, 32(3), 327-337. doi:10.1016/j.vaccine.2013.11.069http://dx.doi.org/10.1016/j.vaccine.2013.11.069
Barber G. N. Cytoplasmic DNA innate immune pathways. Immunol. Rev., 2011, 243(1), 99-108. doi:10.1111/j.1600-065x.2011.01051.xhttp://dx.doi.org/10.1111/j.1600-065x.2011.01051.x
Pifferi C.; Fuentes R.; Fernández-Tejada A. Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat. Rev. Chem., 2021, 5(3), 197-216. doi:10.1038/s41570-020-00244-3http://dx.doi.org/10.1038/s41570-020-00244-3
Geijtenbeek T. B.; Gringhuis S. I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol., 2009, 9(7), 465-479. doi:10.1038/nri2569http://dx.doi.org/10.1038/nri2569
Francis G.; Kerem Z.; Makkar H. P.; Becker K. The biological action of saponins in animal systems: A review. Br. J. Nutr., 2002, 88(6), 587-605. doi:10.1079/bjn2002725http://dx.doi.org/10.1079/bjn2002725
Nanishi E.; Angelidou A.; Rotman C.; Dowling D. J.; Levy O.; Ozonoff A. Precision vaccine adjuvants for older adults: a scoping review. Clin. Infect. Dis., 2022, 75(Supplement_1), S72-S80. doi:10.1093/cid/ciac302http://dx.doi.org/10.1093/cid/ciac302
Jirátová M.; Gálisová A.; Rabyk M.; Sticová E.; Hrubý M.; Jirák D. Mannan-based nanodiagnostic agents for targeting sentinel lymph nodes and tumors. Molecules, 2020, 26(1), 146. doi:10.3390/molecules26010146http://dx.doi.org/10.3390/molecules26010146
Nelson R. D.; Shibata N.; Podzorski R. P.; Herron M. J. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin. Microbiol. Rev., 1991, 4(1), 1-19. doi:10.1128/cmr.4.1.1http://dx.doi.org/10.1128/cmr.4.1.1
Ampel N. M.; Nelson D. K.; Li L.; Dionne S. O.; Lake D. F.; Simmons K. A.; Pappagianis D. The mannose receptor mediates the cellular immune response in human coccidioidomycosis. Infect. Immun., 2005, 73(4), 2554-2555. doi:10.1128/iai.73.4.2554-2555.2005http://dx.doi.org/10.1128/iai.73.4.2554-2555.2005
Hagert C.; Sareila O.; Kelkka T.; Jalkanen S.; Holmdahl R. The macrophage mannose receptor regulate mannan-induced psoriasis, psoriatic arthritis, and rheumatoid arthritis-like disease models. Front. Immunol., 2018, 9114. doi:10.3389/fimmu.2018.00114http://dx.doi.org/10.3389/fimmu.2018.00114
Xu Y.; Ma S.; Zhao J.; Chen H.; Si X.; Huang Z.; Yu Z.; Song W.; Tang Z.; Chen X. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials, 2022, 284121489. doi:10.1016/j.biomaterials.2022.121489http://dx.doi.org/10.1016/j.biomaterials.2022.121489
Byun E. B.; Sung N. Y.; Park S. H.; Park C.; Byun E. H. β-(1,3)-Glucan isolated from Agrobacterium species induces maturation of bone marrow-derived dendritic cells and drives Th1 immune responses. Food Sci. Biotechnol., 2015, 24(4), 1533-1540.
Seong S. K.; Kim H. W. Potentiation of innate immunity by β-glucans. Mycobiology, 2010, 38(2), 144-148. doi:10.4489/myco.2010.38.2.144http://dx.doi.org/10.4489/myco.2010.38.2.144
Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul. Toxicol. Pharmacol., 2010, 56(3), 290-299. doi:10.1016/j.yrtph.2009.09.015http://dx.doi.org/10.1016/j.yrtph.2009.09.015
Heffernan M. J.; Zaharoff D. A.; Fallon J. K.; Schlom J.; Greiner J. W. In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials, 2011, 32(3), 926-932. doi:10.1016/j.biomaterials.2010.09.058http://dx.doi.org/10.1016/j.biomaterials.2010.09.058
Carroll E. C.; Jin L.; Mori A.; Muñoz-Wolf N.; Oleszycka E.; Moran H. B. T.; Mansouri S.; McEntee C. P.; Lambe E.; Agger E. M.; Andersen P.; Cunningham C.; Hertzog P.; Fitzgerald K. A.; Bowie A. G.; Lavelle E. C. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity, 2016, 44(3), 597-608. doi:10.1016/j.immuni.2016.02.004http://dx.doi.org/10.1016/j.immuni.2016.02.004
Bueter C. L.; Lee C. K.; Wang J. P.; Ostroff G. R.; Specht C. A.; Levitz S. M. Spectrum and mechanisms of inflammasome activation by chitosan. J. Immunol., 2014, 192(12), 5943-5951. doi:10.4049/jimmunol.1301695http://dx.doi.org/10.4049/jimmunol.1301695
Fan Y.; Sahdev P.; Ochyl L. J.; Akerberg J. J.; Moon J. J. Cationic liposome-hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J. Control. Release, 2015, 208, 121-129. doi:10.1016/j.jconrel.2015.04.010http://dx.doi.org/10.1016/j.jconrel.2015.04.010
Li S.; Feng X.; Wang J.; He L.; Wang C.; Ding J.; Chen X. Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Res., 2018, 11(11), 5769-5786. doi:10.1007/s12274-018-2124-7http://dx.doi.org/10.1007/s12274-018-2124-7
Sun L.; Wu J.; Du F.; Chen X.; Chen Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013, 339(6121), 786-791. doi:10.1126/science.1232458http://dx.doi.org/10.1126/science.1232458
Zhang X.; Shi H.; Wu J.; Zhang X.; Sun L.; Chen C.; Chen Z. J. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Molecular Cell, 2013, 51(2), 226-235. doi:10.1016/j.molcel.2013.05.022http://dx.doi.org/10.1016/j.molcel.2013.05.022
Parvatiyar K.; Zhang Z.; Teles R. M.; Ouyang S.; Jiang Y.; Iyer S. S.; Zaver S. A.; Schenk M.; Zeng S.; Zhong W. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol., 2012, 13(12), 1155-1161. doi:10.1038/ni.2460http://dx.doi.org/10.1038/ni.2460
Dunn G. P.; Bruce A. T.; Sheehan K. C.; Shankaran V.; Uppaluri R.; Bui J. D.; Diamond M. S.; Koebel C. M.; Arthur C.; White J. M.; Schreiber R. D. A critical function for type I interferons in cancer immunoediting. Nat. Immunol., 2005, 6(7), 722-729. doi:10.1038/ni1213http://dx.doi.org/10.1038/ni1213
Tanaka, Y.; Chen, Z. J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal., 2012, 5(214), ra20. doi:10.1126/scisignal.2002521http://dx.doi.org/10.1126/scisignal.2002521
Shae D.; Becker K. W.; Christov P.; Yun D. S.; Lytton-Jean A. K. R.; Sevimli S.; Ascano M.; Kelley M.; Johnson D. B.; Balko J. M.; Wilson J. T. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol., 2019, 14(3), 269-278. doi:10.1038/s41565-018-0342-5http://dx.doi.org/10.1038/s41565-018-0342-5
Li S.; Luo M.; Wang Z.; Feng Q.; Wilhelm J.; Wang X.; Li W.; Wang J.; Cholka A.; Fu Y. X. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat. Biomed. Eng., 2021, 5(5), 455-466. doi:10.1038/s41551-020-00675-9http://dx.doi.org/10.1038/s41551-020-00675-9
Luo M.; Wang H.; Wang Z.; Cai H.; Lu Z.; Li Y.; Du M.; Huang G.; Wang C.; Chen X.; Porembka M. R.; Lea J.; Frankel A. E.; Fu Y. X.; Chen Z. J.; Gao J. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol., 2017, 12(7), 648-654. doi:10.1038/nnano.2017.52http://dx.doi.org/10.1038/nnano.2017.52
Zhao J.; Xu Y.; Ma S.; Wang Y.; Huang Z.; Qu H.; Yao H.; Zhang Y.; Wu G.; Huang L.; Song W.; Tang Z.; Chen X. A minimalist binary vaccine carrier for personalized postoperative cancer vaccine therapy. Adv. Mater., 2022, 34(10), e2109254. doi:10.1002/adma.202109254http://dx.doi.org/10.1002/adma.202109254
Zhou R.; Yazdi A. S.; Menu P.; Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225. doi:10.1038/nature09663http://dx.doi.org/10.1038/nature09663
Duewell P.; Kono H.; Rayner K. J.; Sirois C. M.; Vladimer G.; Bauernfeind F. G.; Abela G. S.; Franchi L.; Nuñez G.; Schnurr M.; Espevik T.; Lien E.; Fitzgerald K. A.; Rock K. L.; Moore K. J.; Wright S. D.; Hornung V.; Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361. doi:10.1038/nature08938http://dx.doi.org/10.1038/nature08938
Martinon F.; Pétrilli V.; Mayor A.; Tardivel A.; Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241. doi:10.1038/nature04516http://dx.doi.org/10.1038/nature04516
He Y.; Zeng M. Y.; Yang D.; Motro B.; Núñez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature, 2016, 530(7590), 354-357. doi:10.1038/nature16959http://dx.doi.org/10.1038/nature16959
Lamkanfi M.; Malireddi R. K.; Kanneganti T. D. Fungal zymosan and mannan activate the cryopyrin inflammasome. J. Biol. Chem., 2009, 284(31), 20574-20581. doi:10.1074/jbc.m109.023689http://dx.doi.org/10.1074/jbc.m109.023689
Dempsey C.; Araiz A. R.; Bryson K.; Finucane O.; Larkin C.; Mills E.; Robertson A.; Cooper M.; O'Neill L.; Lynch M. Inhibiting the NLRP3 withMCCinflammasome950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav. Immun., 2017, 61, 306-316. doi:10.1016/j.bbi.2016.12.014http://dx.doi.org/10.1016/j.bbi.2016.12.014
Turley J. L.; Moran H. B. T.; McEntee C. P.; O'Grady K.; Muñoz-Wolf N.; Jin L.; Follmann F.; Andersen P.; Andersson M.; Lavelle E. C. Chitin-derived polymer deacetylation regulates mitochondrial reactive oxygen species dependent cGAS-STING and NLRP3 inflammasome activation. Biomaterials, 2021, 275, 120961. doi:10.1016/j.biomaterials.2021.120961http://dx.doi.org/10.1016/j.biomaterials.2021.120961
Manna S.; Howitz W. J.; Oldenhuis N. J.; Eldredge A. C.; Shen J.; Nihesh F. N.; Lodoen M. B.; Guan Z.; Esser-Kahn A. P. Immunomodulation of the NLRP3 inflammasome through structure-based activator design and functional regulation via lysosomal rupture. ACS Cent. Sci., 2018, 4(8), 982-995. doi:10.1021/acscentsci.8b00218http://dx.doi.org/10.1021/acscentsci.8b00218
Baljon J. J.; Dandy A.; Wang-Bishop L.; Wehbe M.; Jacobson M. E.; Wilson J. T. The efficiency of cytosolic drug delivery using pH-responsive endosomolytic polymers does not correlate with activation of the NLRP3 inflammasome. Biomater. Sci., 2019, 7(5), 1888-1897. doi:10.1039/c8bm01643ghttp://dx.doi.org/10.1039/c8bm01643g
Nandi D.; Shivrayan M.; Gao J.; Krishna J.; Das R.; Liu B.; Thayumanavan S.; Kulkarni A. Core hydrophobicity of supramolecular nanoparticles induces NLRP3 inflammasome activation. ACS Appl. Mater. Interfaces, 2021, 13(38), 45300-45314. doi:10.1021/acsami.1c14082http://dx.doi.org/10.1021/acsami.1c14082
Dong S.; Ma S.; Chen H.; Tang Z.; Song W.; Deng M. Nucleobase-crosslinked poly(2-oxazoline) nanoparticles as paclitaxel carriers with enhanced stability and ultra-high drug loading capacity for breast cancer therapy. Asian J. Pharm. Sci., 2022, 17(4), 571-582. doi:10.1016/j.ajps.2022.04.006http://dx.doi.org/10.1016/j.ajps.2022.04.006
Dong S.; Ma S.; Liu Z. L.; Ma L. L.; Zhang Y.; Tang Z. H.; Deng M. X.; Song W. T. Functional amphiphilic poly(2-oxazoline) block copolymers as drug carriers: The relationship between structure and drug loading capacity. Chinese J. Polym. Sci., 2021, 39(7), 865-873. doi:10.1007/s10118-021-2547-6http://dx.doi.org/10.1007/s10118-021-2547-6
Ma S.; Song W.; Xu Y.; Si X.; Zhang Y.; Tang Z.; Chen X. A ROS-responsive aspirin polymeric prodrug for modulation of tumor microenvironment and cancer immunotherapy. CCS Chem., 2020, 2(6), 390-400. doi:10.31635/ccschem.020.202000140http://dx.doi.org/10.31635/ccschem.020.202000140
Zhang Y.; Ma S.; Liu X.; Xu Y.; Zhao J.; Si X.; Li H.; Huang Z.; Wang Z.; Tang Z.; Song W.; Chen X. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv. Mater., 2021, 33(7), e2007293. doi:10.1002/adma.202007293http://dx.doi.org/10.1002/adma.202007293
Wilson D. S.; Hirosue S.; Raczy M. M.; Bonilla-Ramirez L.; Jeanbart L.; Wang R.; Kwissa M.; Franetich J. F.; Broggi M. A. S.; Diaceri G.; Quaglia-Thermes X.; Mazier D.; Swartz M. A.; Hubbell J. A. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater., 2019, 18(2), 175-185. doi:10.1038/s41563-018-0256-5http://dx.doi.org/10.1038/s41563-018-0256-5
Lynn G. M.; Laga R.; Darrah P. A.; Ishizuka A. S.; Balaci A. J.; Dulcey A. E.; Pechar M.; Pola R.; Gerner M. Y.; Yamamoto A. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol., 2015, 33(11), 1201-1210. doi:10.1038/nbt.3371http://dx.doi.org/10.1038/nbt.3371
Wang Y.; Gong N.; Ma C.; Zhang Y.; Tan H.; Qing G.; Wang Y.; Wang J.; Chen S. An amphiphilic dendrimer as a light-activable immunological adjuvant for in situ cancer vaccination. Nat. Commun., 2021, 12, 1-16. doi:10.1038/s41467-021-25197-zhttp://dx.doi.org/10.1038/s41467-021-25197-z
Pino M.; Abid T.; Ribeiro S.; Edara V. V.; Floyd K.; Smith J. C.; Latif M. B.; Pacheco-Sanchez G.; Dutta D.; Wang S.; Gumber S.; Kirejczyk S.; Cohen J.; Stammen R. L.; Jean S. M.; Wood J. S.; Connor-Stroud F.; Pollet J.; Chen W. H.; Wei J.; Zhan B.; Lee J.; Liu Z.; Strych U.; Shenvi N.; Easley K.; Weiskopf D.; Sette A.; Pollara J.; Mielke D.; Gao H.; Eisel N.; LaBranche C. C.; Shen X.; Ferrari G.; Tomaras G. D.; Montefiori D. C.; Sekaly R. P.; Vanderford T. H.; Tomai M. A.; Fox C. B.; Suthar M. S.; Kozlowski P. A.; Hotez P. J.; Paiardini M.; Bottazzi M. E.; Kasturi S. P. A yeast expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human Primates. Sci. Immunol., 2021, 6(61), eabh3634. doi:10.1126/sciimmunol.abh3634http://dx.doi.org/10.1126/sciimmunol.abh3634
Smirnov D.; Schmidt J. J.; Capecchi J. T.; Wightman P. D. Vaccine adjuvant activity of 3M-052: an imidazoquinoline designed for local activity without systemic cytokine induction. Vaccine, 2011, 29(33), 5434-5442. doi:10.1016/j.vaccine.2011.05.061http://dx.doi.org/10.1016/j.vaccine.2011.05.061
Anderson E. J.; Rouphael N. G.; Widge A. T.; Jackson L. A.; Roberts P. C.; Makhene M.; Chappell J. D.; Denison M. R.; Stevens L. J.; Pruijssers A. J. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N. Engl. J. Med., 2020, 383(25), 2427-2438. doi:10.1056/nejmoa2028436http://dx.doi.org/10.1056/nejmoa2028436
Baden L. R.; El Sahly H. M.; Essink B.; Kotloff K.; Frey S.; Novak R.; Diemert D.; Spector S. A.; Rouphael N.; Creech C. B. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med., 2020, 384(5), 403-416. doi:10.1056/nejmoa2035389http://dx.doi.org/10.1056/nejmoa2035389
Dowling D. J.; Scott E. A.; Scheid A.; Bergelson I.; Joshi S.; Pietrasanta C.; Brightman S.; Sanchez-Schmitz G.; van Haren S. D.; Ninković J.; Kats D.; Guiducci C.; de Titta A.; Bonner D. K.; Hirosue S.; Swartz M. A.; Hubbell J. A.; Levy O. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J. Allergy Clin. Immunol., 2017, 140(5), 1339-1350. doi:10.1016/j.jaci.2016.12.985http://dx.doi.org/10.1016/j.jaci.2016.12.985
Foged C.; Brodin B.; Frokjaer S.; Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm., 2005, 298(2), 315-322. doi:10.1016/j.ijpharm.2005.03.035http://dx.doi.org/10.1016/j.ijpharm.2005.03.035
Mosquera J.; García I.; Liz-Marzán L. M. Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc. Chem. Res., 2018, 51(9), 2305-2313. doi:10.1021/acs.accounts.8b00292http://dx.doi.org/10.1021/acs.accounts.8b00292
Reddy S. T.; van der Vlies A. J.; Simeoni E.; Angeli V.; Randolph G. J.; O'Neil C. P.; Lee L. K.; Swartz M. A.; Hubbell J. A. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol., 2007, 25(10), 1159-1164. doi:10.1038/nbt1332http://dx.doi.org/10.1038/nbt1332
Champion J. A.; Mitragotri S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci., 2006, 103(13), 4930-4934. doi:10.1073/pnas.0600997103http://dx.doi.org/10.1073/pnas.0600997103
Kumar S.; Anselmo A. C.; Banerjee A.; Zakrewsky M.; Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release, 2015, 220, 141-148. doi:10.1016/j.jconrel.2015.09.069http://dx.doi.org/10.1016/j.jconrel.2015.09.069
Vaine C. A.; Patel M. K.; Zhu J.; Lee E.; Finberg R. W.; Hayward R. C.; Kurt-Jones E. A. Tuning innate immune activation by surface texturing of polymer microparticles: The role of shape in inflammasome activation. J. Immunol., 2013, 190(7), 3525-3532. doi:10.4049/jimmunol.1200492http://dx.doi.org/10.4049/jimmunol.1200492
Wang J.; Chen H. J.; Hang T.; Yu Y.; Liu G.; He G.; Xiao S.; Yang B. R.; Yang C.; Liu F.; Tao J.; Wu M. X.; Xie X. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol., 2018, 13(11), 1078-1086. doi:10.1038/s41565-018-0274-0http://dx.doi.org/10.1038/s41565-018-0274-0
Qiao D.; Chen Y.; Liu L. Engineered therapeutic nanovaccine against chronic hepatitis B virus infection. Biomaterials, 2021, 269, 120674. doi:10.1016/j.biomaterials.2021.120674http://dx.doi.org/10.1016/j.biomaterials.2021.120674
Sun Z.; Qiao D.; Shi Y.; Barz M.; Liu L.; Chen Y. Precision wormlike nanoadjuvant governs potency of vaccination. Nano Lett., 2021, 21(17), 7236-7243. doi:10.1021/acs.nanolett.1c02274http://dx.doi.org/10.1021/acs.nanolett.1c02274
Liu H.; Wen Z.; Chen H.; Yang Z.; Le Z.; Liu Z.; Chen Y.; Liu L. Nanoadjuvants actively targeting lymph node conduits and blocking tumor invasion in lymphatic vessels. J. Control. Release, 2022, 352, 497-506. doi:10.1016/j.jconrel.2022.10.053http://dx.doi.org/10.1016/j.jconrel.2022.10.053
Qiao D.; Li L.; Liu L.; Chen Y. Universal and translational nanoparticulate CpG adjuvant. ACS Appl. Mater. Interfaces, 2022, 14(45), 50592-50600. doi:10.1021/acsami.2c15644http://dx.doi.org/10.1021/acsami.2c15644
Chen Q.; Wang C.; Zhang X.; Chen G.; Hu Q.; Li H.; Wang J.; Wen D.; Zhang Y.; Lu Y.; Yang G.; Jiang C.; Wang J.; Dotti G.; Gu Z. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol., 2019, 14(1), 89-97. doi:10.1038/s41565-018-0319-4http://dx.doi.org/10.1038/s41565-018-0319-4
Fan Q.; Ma Q.; Bai J.; Xu J.; Fei Z.; Dong Z.; Maruyama A.; Leong K. W.; Liu Z.; Wang C. An implantable blood clot-based immune niche for enhanced cancer vaccination. Sci. Adv., 2020, 6(39), eabb4639. doi:10.1126/sciadv.abb4639http://dx.doi.org/10.1126/sciadv.abb4639
Ji G.; Zhang Y.; Si X.; Yao H.; Ma S.; Xu Y.; Zhao J.; Ma C.; He C.; Tang Z. Biopolymer immune implants' sequential activation of innate and adaptive immunity for colorectal cancer postoperative immunotherapy. Adv. Mater., 2021, 33(3), 2004559. doi:10.1002/adma.202004559http://dx.doi.org/10.1002/adma.202004559
Si X.; Ji G.; Ma S.; Xu Y.; Zhao J.; Huang Z.; Zhang Y.; Song W.; Tang Z. Biodegradable implants combined with immunogenic chemotherapy and immune checkpoint therapy for peritoneal metastatic carcinoma postoperative treatment. ACS Biomater. Sci. Eng., 2020, 6(9), 5281-5289. doi:10.1021/acsbiomaterials.0c00840http://dx.doi.org/10.1021/acsbiomaterials.0c00840
Si X.; Ji G.; Ma S.; Xu Y.; Zhao J.; Zhang Y.; Huang Z.; Tang Z.; Song W.; Chen X. In-situ-sprayed dual-functional immunotherapeutic gel for colorectal cancer postsurgical treatment. Adv. Healthc. Mater., 2021, 10(20), 2100862. doi:10.1002/adhm.202100862http://dx.doi.org/10.1002/adhm.202100862
Xi X.; Ye T.; Wang S.; Na X.; Wang J.; Qing S.; Gao X.; Wang C.; Li F.; Wei W.; Ma G. Self-healing microcapsules synergetically modulate immunization microenvironments for potent cancer vaccination. Sci. Adv., 2020, 6(21), eaay7735. doi:10.1126/sciadv.aay7735http://dx.doi.org/10.1126/sciadv.aay7735
Ali O. A.; Huebsch N.; Cao L.; Dranoff G.; Mooney D. J. Infection-mimicking materials to program dendritic cells in situ. Nat. Mater., 2009, 8(2), 151-158. doi:10.1038/nmat2357http://dx.doi.org/10.1038/nmat2357
Si X.; Ji G.; Ma S.; Chen H.; Shi Z.; Zhang Y.; Tang Z.; Song W.; Chen X. Comprehensive evaluation of biopolymer immune implants for peritoneal metastasis carcinoma therapy. J. Control. Release, 2023, 353, 289-302. doi:10.1016/j.jconrel.2022.11.028http://dx.doi.org/10.1016/j.jconrel.2022.11.028
Yu Z.; Xu Y.; Yao H.; Si X.; Ji G.; Dong S.; Zhao J.; Tang Z.; Fang X.; Song W.; Chen X. A simple and general strategy for postsurgical personalized cancer vaccine therapy based on an injectable dynamic covalent hydrogel. Biomater. Sci., 2021, 9(20), 6879-6888. doi:10.1039/d1bm01000jhttp://dx.doi.org/10.1039/d1bm01000j
Roth G. A.; Gale E. C.; Alcántara-Hernández M.; Luo W.; Axpe E.; Verma R.; Yin Q.; Yu A. C.; Lopez Hernandez H.; Maikawa C. L.; Smith A. A. A.; Davis M. M.; Pulendran B.; Idoyaga J.; Appel E. A. Injectable hydrogels for sustained codelivery of subunit vaccines enhance humoral immunity. ACS Cent. Sci., 2020, 6(10), 1800-1812. doi:10.1021/acscentsci.0c00732http://dx.doi.org/10.1021/acscentsci.0c00732
Gale E. C.; Powell A. E.; Roth G. A.; Meany E. L.; Yan J.; Ou B. S.; Grosskopf A. K.; Adamska J.; Picece V. C.; D'Aquino A. I. Hydrogel‐based slow release of a receptor‐binding domain subunit vaccine elicits neutralizing antibody responses against SARS‐CoV‐2. Adv. Mater., 2021, 33(51), 2104362. doi:10.1002/adma.202104362http://dx.doi.org/10.1002/adma.202104362
Chen J.; Wang B.; Caserto J. S.; Shariati K.; Cao P.; Pan Y.; Xu Q.; Ma M. Sustained delivery of SARS-CoV-2 RBD subunit vaccine using a high affinity injectable hydrogel scaffold. Adv. Healthc. Mater., 2022, 11(2), 2101714. doi:10.1002/adhm.202101714http://dx.doi.org/10.1002/adhm.202101714
Liljeqvist S.; Ståhl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J. Biotechnol., 1999, 73(1), 1-33. doi:10.1016/s0168-1656(99)00107-8http://dx.doi.org/10.1016/s0168-1656(99)00107-8
Baharom F.; Ramirez-Valdez R. A.; Khalilnezhad A.; Khalilnezhad S.; Dillon M.; Hermans D.; Fussell S.; Tobin K. K. S.; Dutertre C. A.; Lynn G. M. Systemic vaccination induces CD8+ T cells and remodels the tumor microenvironment. Cell, 2022, 185(23), 4317-4332. doi:10.1016/j.cell.2022.10.006http://dx.doi.org/10.1016/j.cell.2022.10.006
Broos K.; van der Jeught K.; Puttemans J.; Goyvaerts C.; Heirman C.; Dewitte H.; Verbeke R.; Lentacker I.; Thielemans K.; Breckpot K. Particle-mediated intravenous delivery of antigen mRNA results in strong antigen-specific T-cell responses despite the induction of type I interferon. Mol. Ther. Nucleic Acids, 2016, 5, e326. doi:10.1038/mtna.2016.38http://dx.doi.org/10.1038/mtna.2016.38
0
Views
101
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution