浏览全部资源
扫码关注微信
1.华东理工大学材料科学与工程学院 教育部医用生物材料工程研究中心 上海 200237
2.华东理工大学深圳研究院 深圳 518063
Run-hui Liu, E-mail: rliu@ecust.edu.cn
Published:20 July 2023,
Published Online:22 March 2023,
Received:25 November 2022,
Accepted:20 January 2023
扫 描 看 全 文
周睿毅,佘蕴芮,武月铭等.促内皮化β-多肽聚合物修饰的聚氨酯表面抗菌功能研究[J].高分子学报,2023,54(07):1055-1063.
Zhou Rui-yi,She Yun-rui,Wu Yue-ming,et al.Study on Antibacterial Function of Polyurethane Surface Modified with Endothelializable β-Peptide Polymer[J].ACTA POLYMERICA SINICA,2023,54(07):1055-1063.
周睿毅,佘蕴芮,武月铭等.促内皮化β-多肽聚合物修饰的聚氨酯表面抗菌功能研究[J].高分子学报,2023,54(07):1055-1063. DOI: 10.11777/j.issn1000-3304.2022.22406.
Zhou Rui-yi,She Yun-rui,Wu Yue-ming,et al.Study on Antibacterial Function of Polyurethane Surface Modified with Endothelializable β-Peptide Polymer[J].ACTA POLYMERICA SINICA,2023,54(07):1055-1063. DOI: 10.11777/j.issn1000-3304.2022.22406.
由于血管移植物在植入过程中容易引起内皮损伤及微生物感染的风险,迫切需要研究能够促进表面内皮化并抗微生物感染的生物材料来降低这些风险发生的概率. 本工作将近期发现的具有促内皮化功能的
β
-多肽聚合物修饰到人工血管常用材料热塑型聚氨酯(TPU)表面,并研究其抗菌功能. 研究表明,
β
-多肽聚合物修饰表面对耐药革兰氏阳性菌和阴性菌表现出广谱的高效抗菌活性. 此外,该功能化TPU表面仍具有优异的选择性促内皮细胞黏附的能力,可满足人工血管移植物抗感染及促内皮化的多功能需求.
Vascular grafts are prone to cause risks of endothelial damage and microbial infection during implantation
so there is an urgent need to find multifunctional biomaterials with endothelializable and antibacterial functions to reduce these risks. Host defense peptides (HDPs) have broad-spectrum antimicrobial activity and are widely used to inhibit microbial infections. However
the application of these peptides is limited due to their low stability
expensive and time-consuming synthesis. Therefore
in order to meet the multifunctional requirements of vascular grafts and address these limitations
endothelializable
β
-peptide polymer NM
40
CH
60
was used as HDPs mimics for antibacterial functional studies in this work.
β
-Peptide polymer NM
40
CH
60
was grafted to the surface of thermoplastic polyurethane (TPU)
commonly used in artificial vascular grafts
via
a process of O
2
plasma activation followed by brominated modification. The effective functionalization of TPU surface was confirmed by ellipsometry
X-ray photoelectron spectroscopy and water contact angle characterization. Antibacterial studies showed that NM
40
CH
60
-modified TPU surface exhibited broad-spectrum antibacterial activity against multi-drug resistant Gram-positive and Gram-negative bacteria
as well as efficient contact-killing ability. Antimicrobial mechanism study indicated that NM
40
CH
60
-modified TPU surface killed bacteria by interacting with bacterial membrane. Meanwhile
the functionalized TPU surface displayed excellent blood compatibility. In addition
β
-peptide polymer NM
40
CH
60
-modified TPU surface maintained superior endothelial-selective cell adhesion
which can effectively reduce the risk of microbial infection and endothelial damage of vascular grafts
implying great potential in the treatment of cardiovascular disease.
β-多肽聚合物宿主防御肽抗菌内皮化
β-Peptide polymerHost defense peptideAntibacterialEndothelialization
Flora G. D.; Nayak M. K. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr. Pharm. Des., 2019, 25(38), 4063-4084. doi:10.2174/1381612825666190925163827http://dx.doi.org/10.2174/1381612825666190925163827
Zittermann A.; Gummert, J. F. Sun, vitamin, D, and diseasecardiovascular. J. Photochem. Photobiol. B Biol., 2010, 101(2), 124-129.
Feng L.; Shi J.; Guo J. Y.; Wang S. F. Recent strategies for improving hemocompatibility and endothelialization of cardiovascular devices and inhibition of intimal hyperplasia. J. Mater. Chem. B, 2022, 10(20), 3781-3792. doi:10.1039/d2tb00478jhttp://dx.doi.org/10.1039/d2tb00478j
Pashneh-Tala S.; MacNeil S.; Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Eng. Part B Rev., 2016, 22(1), 68-100. doi:10.1089/ten.teb.2015.0100http://dx.doi.org/10.1089/ten.teb.2015.0100
Cleary M. A.; Geiger E.; Grady C.; Best C.; Naito Y.; Breuer C. Vascular tissue engineering: the next generation. Trends Mol. Med., 2012, 18(7), 394-404. doi:10.1016/j.molmed.2012.04.013http://dx.doi.org/10.1016/j.molmed.2012.04.013
Lazic I.; Obermeier A.; Dietmair B.; Kempf W. E.; Busch A.; Tübel J.; Schneider J.; von Eisenhart-Rothe R.; Biberthaler P.; Burgkart R.; Pförringer D. Treatment of vascular graft infections: gentamicin-coated ePTFE grafts reveals strong antibacterial properties in vitro. J. Mater. Sci. Mater. Med., 2022, 33(3), 30. doi:10.1007/s10856-022-06650-xhttp://dx.doi.org/10.1007/s10856-022-06650-x
Wang Y. L.; He C.; Feng Y. B.; Yang Y.; Wei Z. W.; Zhao W. F.; Zhao C. S. A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering. J. Mater. Chem. B, 2020, 8(3), 568-577. doi:10.1039/c9tb01755khttp://dx.doi.org/10.1039/c9tb01755k
Zhuang Y.; Zhang C. L.; Cheng M. J.; Huang J. Y.; Liu Q. C.; Yuan G. Y.; Lin K. L.; Yu H. B. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact. Mater., 2021, 6(6), 1791-1809. doi:10.1016/j.bioactmat.2020.11.028http://dx.doi.org/10.1016/j.bioactmat.2020.11.028
于谦, 陈红. 具有"杀菌-释菌"功能转换的智能抗菌表面. 高分子学报, 2020, 51(4), 319-325. doi:10.11777/j.issn1000-3304.2020.20031http://dx.doi.org/10.11777/j.issn1000-3304.2020.20031
Wen M. L.; Zhi D. K.; Wang L. N.; Cui C.; Huang Z. Q.; Zhao Y. H.; Wang K.; Kong D. L.; Yuan X. Y. Local delivery of dual microRNAs in trilayered electrospun grafts for vascular regeneration. ACS Appl. Mater. Interfaces, 2020, 12(6), 6863-6875. doi:10.1021/acsami.9b19452http://dx.doi.org/10.1021/acsami.9b19452
Zou Y.; Zhang Y. X.; Yu Q.; Chen H. Dual-function antibacterial surfaces to resist and kill bacteria: painting a picture with two brushes simultaneously. J. Mater. Sci. Technol., 2021, 70, 24-38. doi:10.1016/j.jmst.2020.07.028http://dx.doi.org/10.1016/j.jmst.2020.07.028
Zhang H. R.; Zhang X. M.; Kuang Z.; Jin Y. Y.; Pang S. Y.; Wang Y. Q.; Lin D.; Chen H.; Qian S. Y.; Wang B. L.; Zheng Q. X. Bionic antibacterial modification of IOL through SI-RAFT polymerization of P(TOEAC-co-MPC) brushes to prevent PCO and endophthalmitis. Polym. Test., 2020, 88, 106553. doi:10.1016/j.polymertesting.2020.106553http://dx.doi.org/10.1016/j.polymertesting.2020.106553
Gao Q.; Feng T.; Huang D. N.; Liu P.; Lin P.; Wu Y.; Ye Z. M.; Ji J.; Li P.; Huang W. Antibacterial and hydroxyapatite-forming coating for biomedical implants based on polypeptide-functionalized titania nanospikes. Biomater. Sci., 2019, 8(1), 278-289. doi:10.1039/c9bm01396bhttp://dx.doi.org/10.1039/c9bm01396b
Mou X. H.; Zhang H. B.; Qiu H.; Zhang W. T.; Wang Y.; Xiong K. Q.; Huang N.; Santos H. A.; Yang Z. L. Mussel-inspired and bioclickable peptide engineered surface to combat thrombosis and infection. Research, 2022, 2022, 9780879. doi:10.34133/2022/9780879http://dx.doi.org/10.34133/2022/9780879
Qiao Y.; He J.; Chen W. Y.; Yu Y. H.; Li W. L.; Du Z.; Xie T. T.; Ye Y.; Hua S. Y.; Zhong D. N.; Yao K.; Zhou M. Light-activatable synergistic therapy of drug-resistant bacteria-infected cutaneous chronic wounds and nonhealing keratitis by cupriferous hollow nanoshells. ACS Nano, 2020, 14(3), 3299-3315. doi:10.1021/acsnano.9b08930http://dx.doi.org/10.1021/acsnano.9b08930
刘思思, 陈杰, 林祥德, 柳华杰, 曾冬冬. 壳聚糖/丝素纳米纤维载药多层膜的构建和抗菌应用. 高分子学报, 2022, 53(12), 1459-1465. doi:10.11777/j.issn1000-3304.2022.22117http://dx.doi.org/10.11777/j.issn1000-3304.2022.22117
Boman H. G. Antibacterial peptides: key components needed in immunity. Cell, 1991, 65(2), 205-207. doi:10.1016/0092-8674(91)90154-qhttp://dx.doi.org/10.1016/0092-8674(91)90154-q
Hancock R. E. W.; Sahl H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557. doi:10.1038/nbt1267http://dx.doi.org/10.1038/nbt1267
Mishra B.; Reiling S.; Zarena D.; Wang G. S. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr. Opin. Chem. Biol., 2017, 38, 87-96. doi:10.1016/j.cbpa.2017.03.014http://dx.doi.org/10.1016/j.cbpa.2017.03.014
Sieprawska-Lupa M.; Mydel P.; Krawczyk K.; Wójcik K.; Puklo M.; Lupa B.; Suder P.; Silberring J.; Reed M.; Pohl J.; Shafer W.; McAleese F.; Foster T.; Travis J.; Potempa J. Degradation of human antimicrobial peptide LL-37 by staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother., 2004, 48(12), 4673-4679. doi:10.1128/aac.48.12.4673-4679.2004http://dx.doi.org/10.1128/aac.48.12.4673-4679.2004
Lu Z. Y.; Wu Y. M.; Cong Z. H.; Qian Y. X.; Wu X.; Shao N.; Qiao Z. Q.; Zhang H. D.; She Y. R.; Chen K.; Xiang H. X.; Sun B.; Yu Q.; Yuan Y.; Lin H. D.; Zhu M. F.; Liu R. H. Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact. Mater., 2021, 6(12), 4531-4541. doi:10.1016/j.bioactmat.2021.05.008http://dx.doi.org/10.1016/j.bioactmat.2021.05.008
Wu Y. M.; Zhou M.; Chen K.; Chen S.; Xiao X. M.; Ji Z. M.; Zou J. C.; Liu R. H. Alkali-metal hexamethyldisilazide initiated polymerization on alpha-amino acid N-substituted N-carboxyanhydrides for facile polypeptoid synthesis. Chin. Chem. Lett., 2021, 32(5), 1675-1678. doi:10.1016/j.cclet.2021.02.039http://dx.doi.org/10.1016/j.cclet.2021.02.039
Wu Y. M.; Zhang W. W.; Zhou R. Y.; Chen Q.; Xie C. Y.; Xiang H. X.; Sun B.; Zhu M. F.; Liu R. H. Facile synthesis of high molecular weight polypeptides via fast and moisture insensitive polymerization of α-amino acid N-carboxyanhydrides. Chinese J. Polym. Sci., 2020, 38(10), 1131-1140. doi:10.1007/s10118-020-2471-1http://dx.doi.org/10.1007/s10118-020-2471-1
Xiao X. M.; Zhou M.; Cong Z. H.; Liu L. Q.; Zou J. C.; Ji Z. M.; Cui R. X.; Wu Y. M.; Zhang H. D.; Chen S.; Li M. Q.; Liu R. H. Controllable polymerization of N-substituted β-alanine N-thiocarboxyanhydrides for convenient synthesis of functional poly(β-peptoid)s. CCS Chem., 2022, 1-11. doi:10.31635/ccschem.022.202201840http://dx.doi.org/10.31635/ccschem.022.202201840
钱宇芯, 张丹丰, 武月铭, 陈琦, 刘润辉. 模拟宿主防御肽的尼龙3抗菌聚合物结构设计、合成及活性研究. 高分子学报, 2016, (10), 1300-1311. doi:10.11777/j.issn1000-3304.2016.16194http://dx.doi.org/10.11777/j.issn1000-3304.2016.16194
Qi F.; Qian Y. X.; Shao N.; Zhou R. Y.; Zhang S.; Lu Z. Y.; Zhou M.; Xie J. Y.; Wei T.; Yu Q.; Liu R. H. Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers. ACS Appl. Mater. Interfaces, 2019, 11(21), 18907-18913. doi:10.1021/acsami.9b02915http://dx.doi.org/10.1021/acsami.9b02915
Qian Y. X.; Qi F.; Chen Q.; Zhang Q.; Qiao Z. Q.; Zhang S.; Wei T.; Yu Q.; Yu S.; Mao Z. W.; Gao C. Y.; Ding Y. R.; Cheng Y. Y.; Jin C. Y.; Xie H. X.; Liu R. H. Surface modified with a host defense peptide-mimicking β-peptide polymer kills bacteria on contact with high efficacy. ACS Appl. Mater. Interfaces, 2018, 10(18), 15395-15400. doi:10.1021/acsami.8b01117http://dx.doi.org/10.1021/acsami.8b01117
Zhou R. Y.; Wu Y. M.; Chen K.; Zhang D. T.; Chen Q.; Zhang D. H.; She Y. R.; Zhang W. J.; Liu L. Q.; Zhu Y. Q.; Gao C. Y.; Liu R. H. A polymeric strategy empowering vascular cell selectivity and potential application superior to extracellular matrix peptides. Adv. Mater., 2022, 34(42), e2200464. doi:10.1002/adma.202200464http://dx.doi.org/10.1002/adma.202200464
Mi H. Y.; Jing X.; Salick M. R.; Cordie T. M.; Peng X. F.; Turng L. S. Properties and fibroblast cellular response of soft and hard thermoplastic polyurethane electrospun nanofibrous scaffolds. J. Biomed. Mater. Res. B Appl. Biomater., 2015, 103(5), 960-970. doi:10.1002/jbm.b.33271http://dx.doi.org/10.1002/jbm.b.33271
0
Views
61
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution