浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学技术大学应用化学工程学院 合肥 230026
Qing Pei, E-mail: peiqing@ciac.ac.cn
Zhi-gang Xie, E-mail: xiez@ciac.ac.cn
Published:20 May 2023,
Published Online:17 February 2023,
Received:28 November 2022,
Accepted:10 January 2023
扫 描 看 全 文
姚秀敏,郝登远,裴晴等.基于磷脂基紫杉醇纳米前药的抗肿瘤应用研究[J].高分子学报,2023,54(05):708-719.
Yao Xiu-min,Hao Deng-yuan,Pei Qing,et al.Phospholipid-hitchhiked Paclitaxel Nanoprodrugs for Tumor Treatment[J].ACTA POLYMERICA SINICA,2023,54(05):708-719.
姚秀敏,郝登远,裴晴等.基于磷脂基紫杉醇纳米前药的抗肿瘤应用研究[J].高分子学报,2023,54(05):708-719. DOI: 10.11777/j.issn1000-3304.2022.22409.
Yao Xiu-min,Hao Deng-yuan,Pei Qing,et al.Phospholipid-hitchhiked Paclitaxel Nanoprodrugs for Tumor Treatment[J].ACTA POLYMERICA SINICA,2023,54(05):708-719. DOI: 10.11777/j.issn1000-3304.2022.22409.
载体材料是影响药物体内递送效率和抗肿瘤活性的重要因素. 本文应用2种不同结构的磷脂材料,包括聚乙二醇修饰的磷脂酰乙醇胺DSPE-PEG和磷脂酰胆碱DPPC,作为载体包裹紫杉醇二聚体(PTX
2
-SS),制备了紫杉醇纳米颗粒. 相比于DPPC,DSPE-PEG作为载体有利于得到均匀的纳米剂型. 同时测定了DSPE-PEG作为载体制备的PTX
2
-SS@DSPE-PEG NPs (DeP NPs)在稳定性、细胞毒性、体内分布和抗肿瘤疗效方面的表现. 该工作为研发疏水药物的磷脂型载体提供了一个重要的参考.
Carriers play crucial roles in improving the drug delivery efficacy and antitumor activity. Here
two kinds of phospholipid-based carriers
including PEGylated phosphatidyl ethanolamine DSPE-PEG and phosphatidyl choline DPPC
were leveraged to encapsulate dimeric paclitaxel prodrugs to obtain the formulations. The impact of phospholipid-based carriers on the colloidal stability
cytotoxicity
bio-distribution and antitumor efficacy was systemically investigated. Compared with DPPC
DSPE-PEG could form uniform nanoformulations (DeP NPs). The average particle size and zeta-potential of DeP NPs were determined to be 201.1 nm and -13.8 mV
respectively
by dynamic light scattering (DLS). The transmission electron microscopy (TEM) images confirmed their well-defined nanostructures. DeP NPs could remain stable in solutions containing 5% glucose
10% FBS
and RPMI-1640 without serum. The hydrophobic interaction dominates the assembly of DSPE-PEG with PTX prodrug. Upon treated with 10 mmol/L H
2
O
2
DeP NPs exhibited the oxidative responsive PTX release. DeP NPs could effectively be internalized by tumor cells
and exhibited more potent cytotoxicity towards cancer cells compared with normal cells. Furthermore
DeP NPs possessed good accumulation of drug at tumor sites and desirable antitumor performance. Our work provides valuable insight into the construction of phospholipid-based carriers material to deliver hydrophobic drugs.
磷脂紫杉醇二聚体前药纳米药物化疗
PhospholipidPaclitaxelDimeric prodrugNanodrugsChemotherapy
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584. doi:10.1038/nrc2167http://dx.doi.org/10.1038/nrc2167
Jordan M. A.; Toso R. J.; Thrower D.; Wilson L. Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. U. S. A., 1993, 90(20), 9552-9556. doi:10.1073/pnas.90.20.9552http://dx.doi.org/10.1073/pnas.90.20.9552
Chabner B. A.; Roberts, T. G.Jr. Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72. doi:10.1038/nrc1529http://dx.doi.org/10.1038/nrc1529
韩子意, 白雪峰, 王钰璋, 陈其文, 张先正. 用于增强结肠癌化疗的肠道菌群葡萄糖醛酸酶响应甘草酸胶束. 高分子学报, 2022, 53(6), 626-635. doi:10.11777/j.issn1000-3304.2022.22021http://dx.doi.org/10.11777/j.issn1000-3304.2022.22021
van der Meel R.; Sulheim E.; Shi Y.; Kiessling F.; Mulder W. J. M.; Lammers T. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017. doi:10.1038/s41565-019-0567-yhttp://dx.doi.org/10.1038/s41565-019-0567-y
Lu S. J.; Xia R.; Wang J.; Pei Q.; Xie Z. G.; Jing X. B. Engineering paclitaxel prodrug nanoparticles via redox-activatable linkage and effective carriers for enhanced chemotherapy. ACS Appl. Mater. Interfaces, 2021, 13(39), 46291-46302. doi:10.1021/acsami.1c12353http://dx.doi.org/10.1021/acsami.1c12353
焦自学, 陈杰, 田华雨, 陈学思. 聚乙烯亚胺介导siRNA和顺铂协同抗肿瘤治疗. 高分子学报, 2015, (1), 127-132. doi:10.11777/j.issn1000-3304.2015.14259http://dx.doi.org/10.11777/j.issn1000-3304.2015.14259
Wang J.; Pei Q.; Xia R.; Liu S.; Hu X. L.; Xie Z. G.; Jing X. B. Comparison of redox responsiveness and antitumor capability of paclitaxel dimeric nanoparticles with different linkers. Chem. Mater., 2020, 32(24), 10719-10727. doi:10.1021/acs.chemmater.0c04080http://dx.doi.org/10.1021/acs.chemmater.0c04080
Lv S. X.; Sylvestre M.; Prossnitz A. N.; Yang L. F.; Pun S. H. Design of polymeric carriers for intracellular peptide delivery in oncology applications. Chem. Rev., 2021, 121(18), 11653-11698. doi:10.1021/acs.chemrev.0c00963http://dx.doi.org/10.1021/acs.chemrev.0c00963
Zhu L.; Dong D.; Yu Z. L.; Zhao Y. F.; Pang D. W.; Zhang Z. L. Folate-engineered microvesicles for enhanced target and synergistic therapy toward breast cancer. ACS Appl. Mater. Interfaces, 2017, 9(6), 5100-5108. doi:10.1021/acsami.6b14633http://dx.doi.org/10.1021/acsami.6b14633
Kenry, Yeo T.; She D. T.; Nai M. H.; Marcelo Valerio V. L.; Pan Y. T.; Middha E.; Lim C. T.; Liu B. Differential collective cell migratory behaviors modulated by phospholipid nanocarriers. ACS Nano, 2021, 15(11), 17412-17425. doi:10.1021/acsnano.1c03060http://dx.doi.org/10.1021/acsnano.1c03060
Luo H.; Sheng J. Y.; Shi L. L.; Yang X. Y.; Chen J. T.; Peng T. H.; Zhou Q. B.; Wan J. L.; Yang X. L. Non-covalent assembly of albumin nanoparticles by hydroxyl radical: a possible mechanism of the NAB technology and a one-step green method to produce protein nanocarriers. Chem. Eng. J., 2021, 404, 126362. doi:10.1016/j.cej.2020.126362http://dx.doi.org/10.1016/j.cej.2020.126362
Su J. J.; Sun Q. N.; Lin S.; Lu S.; Zhang Q.; Li Y. X.; Li B.; Sun Y.; Liu K.; Zhang H. J.; Wang F.; Li J. J.; Wei Y. Biosynthetic and unfolded protein nanocarriers for chemotherapeutic drugs in oral cancers: improved bioavailability and safety of chemotherapeutics. Adv. Funct. Mater., 2022, 32(45), 2204271. doi:10.1002/adfm.202204271http://dx.doi.org/10.1002/adfm.202204271
Huang X. G.; Blum N. T.; Lin J.; Shi J. J.; Zhang C.; Huang P. Chemotherapeutic drug—DNA hybrid nanostructures for anti-tumor therapy. Mater. Horiz., 2021, 8(1), 78-101. doi:10.1039/d0mh00715chttp://dx.doi.org/10.1039/d0mh00715c
Ma W. J.; Zhan Y. X.; Zhang Y. X.; Mao C. C.; Xie X. P.; Lin Y. F. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct. Target. Ther., 2021, 6(1), 351. doi:10.1038/s41392-021-00727-9http://dx.doi.org/10.1038/s41392-021-00727-9
Goldberg M. S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer, 2019, 19(10), 587-602. doi:10.1038/s41568-019-0186-9http://dx.doi.org/10.1038/s41568-019-0186-9
Wang Y. Q.; Li S. M.; Wang X. H.; Chen Q.; He Z. G.; Luo C.; Sun J. Smart transformable nanomedicines for cancer therapy. Biomaterials, 2021, 271, 120737. doi:10.1016/j.biomaterials.2021.120737http://dx.doi.org/10.1016/j.biomaterials.2021.120737
Xie A.; Hanif S.; Ouyang J.; Tang Z. M.; Kong N.; Kim N. Y.; Qi B. W.; Patel D.; Shi B. Y.; Tao W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine, 2020, 56, 102821. doi:10.1016/j.ebiom.2020.102821http://dx.doi.org/10.1016/j.ebiom.2020.102821
Wang M. Y.; Zhang L.; Cai Y. F.; Yang Y.; Qiu L. P.; Shen Y. T.; Jin J.; Zhou J.; Chen J. H. Bioengineered human serum albumin fusion protein as target/enzyme/pH three-stage propulsive drug vehicle for tumor therapy. ACS Nano, 2020, 14(12), 17405-17418. doi:10.1021/acsnano.0c07610http://dx.doi.org/10.1021/acsnano.0c07610
Li G. T.; Sun B. J.; Li Y. Q.; Luo C.; He Z. G.; Sun J. Small-molecule prodrug nanoassemblies: an emerging nanoplatform for anticancer drug delivery. Small, 2021, 17(52), e2101460. doi:10.1002/smll.202101460http://dx.doi.org/10.1002/smll.202101460
Albert A. Chemical aspects of selective toxicity. Nature, 1958, 182(4633), 421-422. doi:10.1038/182421a0http://dx.doi.org/10.1038/182421a0
Bildstein L.; Dubernet C.; Couvreur P. Prodrug-based intracellular delivery of anticancer agents. Adv. Drug Deliv. Rev., 2011, 63(1-2), 3-23. doi:10.1016/j.addr.2010.12.005http://dx.doi.org/10.1016/j.addr.2010.12.005
潘烁炯, 许华平. 活性氧响应含碲高分子. 高分子学报, 2021, 52(8), 857-866. doi:10.11777/j.issn1000-3304.2021.21058http://dx.doi.org/10.11777/j.issn1000-3304.2021.21058
Hao D. Y.; Meng Q.; Jiang B. W.; Lu S. J.; Xiang X. J.; Pei Q.; Yu H. J.; Jing X. B.; Xie Z. G. Hypoxia-activated PEGylated paclitaxel prodrug nanoparticles for potentiated chemotherapy. ACS Nano, 2022, 16(9), 14693-14702. doi:10.1021/acsnano.2c05341http://dx.doi.org/10.1021/acsnano.2c05341
Wang Q.; Wang C.; Li S. Y.; Xiong Y. X.; Wang H. M.; Li Z.; Wan J. L.; Yang X. L.; Li Z. F. Influence of linkers within stimuli-responsive prodrugs on cancer therapy: A case of five doxorubicin dimer-based nanoparticles. Chem. Mater., 2022, 34(5), 2085-2097. doi:10.1021/acs.chemmater.1c03346http://dx.doi.org/10.1021/acs.chemmater.1c03346
Ling X.; Tu J. S.; Wang J. Q.; Shajii A.; Kong N.; Feng C.; Zhang Y.; Yu M.; Xie T.; Bharwani Z.; Aljaeid B. M.; Shi B. Y.; Tao W.; Farokhzad O. C. Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy. ACS Nano, 2019, 13(1), 357-370. doi:10.1021/acsnano.8b06400http://dx.doi.org/10.1021/acsnano.8b06400
Qu Y.; Chu B. Y.; Wei X. W.; Lei M. Y.; Hu D. R.; Zha R. Y.; Zhong L.; Wang M. Y.; Wang F. F.; Qian Z. Y. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for "on-demand" drug delivery. J. Control. Release, 2019, 296, 93-106. doi:10.1016/j.jconrel.2019.01.016http://dx.doi.org/10.1016/j.jconrel.2019.01.016
Ding H. T.; Tan P.; Fu S. Q.; Tian X. H.; Zhang H.; Ma X. L.; Gu Z. W.; Luo K. Preparation and application of pH-responsive drug delivery systems. J. Control. Release, 2022, 348, 206-238. doi:10.1016/j.jconrel.2022.05.056http://dx.doi.org/10.1016/j.jconrel.2022.05.056
Li S. M.; Shan X. Z.; Wang Y. Q.; Chen Q.; Sun J.; He Z. G.; Sun B. J.; Luo C. Dimeric prodrug-based nanomedicines for cancer therapy. J. Control. Release, 2020, 326, 510-522. doi:10.1016/j.jconrel.2020.07.036http://dx.doi.org/10.1016/j.jconrel.2020.07.036
Xia R.; Pei Q.; Wang J.; Wang Z. F.; Hu X. L.; Xie Z. G. Redox responsive paclitaxel dimer for programmed drug release and selectively killing cancer cells. J. Colloid Interface Sci., 2020, 580, 785-793. doi:10.1016/j.jcis.2020.07.086http://dx.doi.org/10.1016/j.jcis.2020.07.086
Pei Q.; Lu S. J.; Zhou J. L.; Jiang B. W.; Li C. N.; Xie Z. G.; Jing X. B. Intracellular enzyme-responsive profluorophore and prodrug nanoparticles for tumor-specific imaging and precise chemotherapy. ACS Appl. Mater. Interfaces, 2021, 13(50), 59708-59719. doi:10.1021/acsami.1c19058http://dx.doi.org/10.1021/acsami.1c19058
Zhou S. Y.; Hu X. L.; Xia R.; Liu S.; Pei Q.; Chen G.; Xie Z. G.; Jing X. B. A paclitaxel prodrug activatable by irradiation in a hypoxic microenvironment. Angew. Chem. Int. Ed. Engl., 2020, 59(51), 23198-23205. doi:10.1002/anie.202008732http://dx.doi.org/10.1002/anie.202008732
Salmaso S.; Mastrotto F.; Roverso M.; Gandin V.; de Martin S.; Gabbia D.; de Franco M.; Vaccarin C.; Verona M.; Chilin A.; Caliceti P.; Bogialli S.; Marzaro G. Tyrosine kinase inhibitor prodrug-loaded liposomes for controlled release at tumor microenvironment. J. Control. Release, 2021, 340, 318-330. doi:10.1016/j.jconrel.2021.11.006http://dx.doi.org/10.1016/j.jconrel.2021.11.006
Koudelka Š.; Turánek J. Liposomal paclitaxel formulations. J. Control. Release, 2012, 163(3), 322-334. doi:10.1016/j.jconrel.2012.09.006http://dx.doi.org/10.1016/j.jconrel.2012.09.006
Barenholz Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134. doi:10.1016/j.jconrel.2012.03.020http://dx.doi.org/10.1016/j.jconrel.2012.03.020
Lai F.; Caddeo C.; Manca M. L.; Manconi M.; Sinico C.; Fadda A. M. What's new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int. J. Pharm., 2020, 583, 119398. doi:10.1016/j.ijpharm.2020.119398http://dx.doi.org/10.1016/j.ijpharm.2020.119398
Jiang L.; Chen W. Z.; Zhou S. S.; Li C.; Zhang X. K.; Wu W.; Jiang X. Q. Dendritic phospholipid-based drug delivery systems. Biomater. Sci., 2018, 6(4), 774-778. doi:10.1039/c7bm01001jhttp://dx.doi.org/10.1039/c7bm01001j
Liu S.; Wang X.; Yu X. L.; Cheng Q.; Johnson L. T.; Chatterjee S.; Zhang D.; Lee S. M.; Sun Y. H.; Lin T. C.; Liu J. L.; Siegwart D. J. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J. Am. Chem. Soc., 2021, 143(50), 21321-21330. doi:10.1021/jacs.1c09822http://dx.doi.org/10.1021/jacs.1c09822
Ladd J.; Zhang Z.; Chen S. F.; Hower J. C.; Jiang S. Y. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 2008, 9(5), 1357-1361. doi:10.1021/bm701301shttp://dx.doi.org/10.1021/bm701301s
0
Views
47
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution