浏览全部资源
扫码关注微信
北京航空航天大学化学学院 仿生智能界面科学与技术教育部重点实验室 北京 100191
Published:20 July 2023,
Published Online:16 February 2023,
Received:29 November 2022,
Accepted:13 January 2023
扫 描 看 全 文
李超,高龙成.高分子微量基团的反熵聚集[J].高分子学报,2023,54(07):995-1011.
Li Chao,Gao Long-cheng.Anti-entropy Aggregation of Minority Groups in Polymers[J].ACTA POLYMERICA SINICA,2023,54(07):995-1011.
李超,高龙成.高分子微量基团的反熵聚集[J].高分子学报,2023,54(07):995-1011. DOI: 10.11777/j.issn1000-3304.2022.22410.
Li Chao,Gao Long-cheng.Anti-entropy Aggregation of Minority Groups in Polymers[J].ACTA POLYMERICA SINICA,2023,54(07):995-1011. DOI: 10.11777/j.issn1000-3304.2022.22410.
高分子微量基团是指高分子链上普遍存在而又含量微少的非重复单元基团. 因其含量低,微量基团易被高分子主体所包埋,在聚集态中倾向于采取随机均匀分散的熵最大化状态. 在本文中,我们提出了反熵聚集的概念,即微量基团在聚集态中发生熵减地局域聚集;重点介绍了通过调控高分子中超分子作用实现微量基团反熵聚集的策略,包括:结晶高分子的结晶驱动,非晶高分子中微量基团的超分子诱导,嵌段共聚物中微相分离的限域作用,微量基团超分子诱导与微相分离限域作用的跨级协同;归纳了X-射线技术、荧光光谱、红外光谱、固体表面Zeta电位、流变学等研究反熵聚集的技术手段;进一步地,总结了微量基团反熵聚集在荧光探针、材料自修复、离子传输调控和能量转换等方面的应用. 最后,对复杂微量基团反熵聚集体系的仿生构建前景进行了展望.
Minority groups are non-repeat units with low-volume fractions that inevitably exist in polymers. Generally
these minority groups are easily surrounded by the repeating units and randomly dispersed in the condensed state
accompanied by an increment in entropy. In this feature article
we focus on strategies to regulate the geometric distribution of supramolecular forces in polymers to achieve anti-entropy aggregation (AEA) of minority groups. It mainly includes the driving force of polymer crystallization
the supramolecular interaction of minority groups in amorphous polymers
the nanoconfined effect of microphase separation in block copolymers
and the synergetic effect between supramolecular interaction and nanoconfined interaction. We further present several analytic techniques to characterize the anti-entropy aggregation of minority groups
such as X-ray techniques
fluorescence spectroscopy
infrared spectroscopy
zeta potential
and rheology. Further
the applications of AEA materials in the fields of fluorescence probes
self-healing
ion transporting regulation
and osmotic energy conversion are comprehensively discussed. Finally
we summarize the advantages of AEA materials toward traditional functional polymers and prospect the fabrication of the complex inspired systems with the AEA strategy.
反熵聚集微量基团功能高分子
Anti-entropy aggregationMinority groupsFunctional polymers
de Greef T. F.; Meijer E. W. Supramolecular polymers. Nature, 2008, 453(7192), 171-173. doi:10.1038/453171ahttp://dx.doi.org/10.1038/453171a
Sijbesma R. P.; Beijer F. H.; Brunsveld L.; Folmer B. J.; Hirschberg J. K.; Lange R. F.; Lowe J. K.; Meijer E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science, 1997, 278(5343), 1601-1604. doi:10.1126/science.278.5343.1601http://dx.doi.org/10.1126/science.278.5343.1601
Yanagisawa Y.; Nan Y.; Okuro K.; Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science, 2018, 359(6371), 72-76. doi:10.1126/science.aam7588http://dx.doi.org/10.1126/science.aam7588
Wang J.; de Jeu W. H.; Müller P.; Möller M.; Mourran A. Thin film structure of block copolymer-surfactant complexes: Strongly ionic bonding polymer systems. Macromolecules, 2012, 45(2), 974-985. doi:10.1021/ma202079mhttp://dx.doi.org/10.1021/ma202079m
Wieczorek W.; Lipka P.; Żukowska G.; Wyciślik H. Ionic interactions in polymeric electrolytes based on low molecular weight poly(ethylene glycol)s. J. Phys. Chem. B, 1998, 102(36), 6968-6974. doi:10.1021/jp981397khttp://dx.doi.org/10.1021/jp981397k
Mozhdehi D.; Ayala S.; Cromwell O. R.; Guan Z. Self-healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc., 2014, 136(46), 16128-16131. doi:10.1021/ja5097094http://dx.doi.org/10.1021/ja5097094
Rao Y. L.; Chortos A.; Pfattner R.; Lissel F.; Chiu Y. C.; Feig V.; Xu J.; Kurosawa T.; Gu X.; Wang C. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J. Am. Chem. Soc., 2016, 138(18), 6020-6027. doi:10.1021/jacs.6b02428http://dx.doi.org/10.1021/jacs.6b02428
Li C. H.; Wang C.; Keplinger C.; Zuo J. L.; Jin L.; Sun Y.; Zheng P.; Cao Y.; Lissel F.; Linder C. A highly stretchable autonomous self-healing elastomer. Nat. Commun., 2016, 8(6), 618-624. doi:10.1038/nchem.2492http://dx.doi.org/10.1038/nchem.2492
Wang R.; Alexander-Katz A.; Johnson J. A.; Olsen B. D. Universal cyclic topology in polymer networks. Phys. Rev. Lett., 2016, 116(18), 188302. doi:10.1103/physrevlett.116.188302http://dx.doi.org/10.1103/physrevlett.116.188302
Qin J.; Milner, S. T. Tubes, topology, and polymer entanglement. Macromolecules, 2014, 47(17), 6077-6085.
Frank-Kamenetskii M.; Lukashin A.; Vologodskii A. Statistical mechanics and topology of polymer chains. Nature, 1975, 258(5534), 398-402. doi:10.1038/258398a0http://dx.doi.org/10.1038/258398a0
Matyjaszewski K. Architecturally complex polymers with controlled heterogeneity. Science, 2011, 333(6046), 1104-1105. doi:10.1126/science.1209660http://dx.doi.org/10.1126/science.1209660
Kim J.; Swager T. Control of conformational and interpolymer effects in conjugated polymers. Nature, 2001, 411(6841), 1030-1034. doi:10.1038/35082528http://dx.doi.org/10.1038/35082528
Liu C.; Hu W.; Jiang H.; Liu G.; Han C. C.; Sirringhaus H.; Boué F. O.; Wang D. Chain conformation and aggregation structure formation of a high charge mobility DPP-based donor-acceptor conjugated polymer. Macromolecules, 2020, 53(19), 8255-8266. doi:10.1021/acs.macromol.0c01646http://dx.doi.org/10.1021/acs.macromol.0c01646
Abyzov A.; Blackledge M.; Zweckstetter M. Conformational dynamics of intrinsically disordered proteins regulate biomolecular condensate chemistry. Chem. Rev., 2022, 122(6), 6719-6748. doi:10.1021/acs.chemrev.1c00774http://dx.doi.org/10.1021/acs.chemrev.1c00774
Sariban A.; Binder K. Critical properties of the Flory-Huggins lattice model of polymer mixtures. J. Chem. Phys., 1987, 86(10), 5859-5873. doi:10.1063/1.452516http://dx.doi.org/10.1063/1.452516
Bawendi M.; Freed K. F.; Mohanty U. A lattice model for self-avoiding polymers with controlled length distributions. II. Corrections to Flory-Huggins mean field. J. Chem. Phys., 1986, 84(12), 7036-7047. doi:10.1063/1.450625http://dx.doi.org/10.1063/1.450625
Michell R. M.; Mueller A. J. Confined crystallization of polymeric materials. Prog. Polym. Sci., 2016, 54, 183-213. doi:10.1016/j.progpolymsci.2015.10.007http://dx.doi.org/10.1016/j.progpolymsci.2015.10.007
Takeshita H.; Shiomi T.; Takenaka K.; Arai F. Crystallization and higher-order structure of multicomponent polymeric systems. Polymer, 2013, 54(18), 4776-4789. doi:10.1016/j.polymer.2013.06.031http://dx.doi.org/10.1016/j.polymer.2013.06.031
Peterlin A. Crystalline Character in Polymers. New York: Wiley Subscription Services, Inc., 1965. 61-89.
Lotz B.; Miyoshi T.; Cheng S. Z. D. Polymer crystals and crystallization: personal journeys in a challenging research field. Macromolecules, 2017, 50(16), 5995-6025. doi:10.1021/acs.macromol.7b00907http://dx.doi.org/10.1021/acs.macromol.7b00907
Xu J.; Ji W.; Li C.; Lv Y.; Qiu Z.; Gao L.; Chen E.; Lam J. W.; Tang B.; Jiang L. Reversible thermal-induced fluorescence color change of tetraphenylethylene‐labeled nylon‐6. Adv. Opt. Mater., 2018, 6(6), 1701149. doi:10.1002/adom.201701149http://dx.doi.org/10.1002/adom.201701149
Song P.; Wang H. High-performance polymeric materials through hydrogen-bond cross-linking. Adv. Mater., 2020, 32(18), 1901244. doi:10.1002/adma.201901244http://dx.doi.org/10.1002/adma.201901244
Song P.; Xu Z.; Lu Y.; Guo Q. Bio-inspired hydrogen-bond cross-link strategy toward strong and tough polymeric materials. Macromolecules, 2015, 48(12), 3957-3964. doi:10.1021/acs.macromol.5b00673http://dx.doi.org/10.1021/acs.macromol.5b00673
Li C.; Zhang X.; Luo L.; Jiang L.; Gao L. Integrin-mimetic mechanosensory elastomer with fluorescence probe for monitoring chain deformation in situ. CCS Chem., 2022, 4(3), 1065-1073. doi:10.31635/ccschem.021.202100793http://dx.doi.org/10.31635/ccschem.021.202100793
Zhang Z.; Liu C.; Cao X.; Gao L.; Chen Q. Linear viscoelastic and dielectric properties of strongly hydrogen-bonded polymers near the sol-gel transition. Macromolecules, 2016, 49(23), 9192-9202. doi:10.1021/acs.macromol.6b02017http://dx.doi.org/10.1021/acs.macromol.6b02017
Bates F. S.; Fredrickson G. H. Block copolymers-designer soft materials. Phys. Today, 2000, 52(2), 32-38. doi:10.1063/1.882522http://dx.doi.org/10.1063/1.882522
Leibler L. J. M. Theory of microphase separation in block copolymers. Macromolecules, 1980, 13(6), 1602-1617. doi:10.1021/ma60078a047http://dx.doi.org/10.1021/ma60078a047
Gido S. P.; Schwark D. W.; Thomas E. L.; do Carmo Goncalves M. Observation of a non-constant mean curvature interface in an ABC triblock copolymer. Macromolecules, 1993, 26(10), 2636-2640. doi:10.1021/ma00062a040http://dx.doi.org/10.1021/ma00062a040
Kang M.; Moon B. Synthesis of photocleavable poly(styrene-block-ethylene oxide) and its self-assembly into nanoporous thin films. Macromolecules, 2009, 42(1), 455-458. doi:10.1021/ma802434ghttp://dx.doi.org/10.1021/ma802434g
Zhao H.; Gu W.; Sterner E.; Russell T. P.; Coughlin E. B.; Theato P. Highly ordered nanoporous thin films from photocleavable block copolymers. Macromolecules, 2011, 44(16), 6433-6440. doi:10.1021/ma201416bhttp://dx.doi.org/10.1021/ma201416b
Zhao H.; Gu W.; Thielke M. W.; Sterner E.; Tsai T.; Russell T. P.; Coughlin E. B.; Theato P. Functionalized nanoporous thin films and fibers from photocleavable block copolymers featuring activated esters. Macromolecules, 2013, 46(13), 5195-5201. doi:10.1021/ma400659hhttp://dx.doi.org/10.1021/ma400659h
Ma X.; Sui X.; Zhang Z.; Li C.; Zhang N.; Chen A.; Xie Q.; Gao L. Stable nanoporous thin films through one-step UV treatment of a block copolymer precursor. RSC Adv., 2015, 5(119), 98105-98109. doi:10.1039/c5ra18775chttp://dx.doi.org/10.1039/c5ra18775c
Sui X.; Zhang Z.; Guan S.; Xu Y.; Li C.; Lv Y.; Chen A.; Yang L.; Gao L. A facile strategy for the synthesis of block copolymers bearing an acid-cleavable junction. Polym. Chem., 2015, 6(14), 2777-2782. doi:10.1039/c5py00058khttp://dx.doi.org/10.1039/c5py00058k
Satoh K.; Poelma J. E.; Campos L. M.; Stahl B.; Hawker C. J. A facile synthesis of clickable and acid-cleavable PEO for acid-degradable block copolymers. Polym. Chem., 2012, 3(7), 1890-1898. doi:10.1039/c1py00484khttp://dx.doi.org/10.1039/c1py00484k
Jazani A. M.; Shetty C.; Movasat H.; Bawa K. K.; Oh J. K. Imidazole-mediated dual location disassembly of acid‐degradable intracellular drug delivery block copolymer nanoassemblies. Macromol. Rapid Commun., 2021, 42(16), 2100262. doi:10.1002/marc.202100262http://dx.doi.org/10.1002/marc.202100262
Ryu J. H.; Park S.; Kim B.; Klaikherd A.; Russell T. P.; Thayumanavan S. Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. J. Am. Chem. Soc., 2009, 131(29), 9870-9871. doi:10.1021/ja902567phttp://dx.doi.org/10.1021/ja902567p
Cerritelli S.; Velluto D.; Hubbell J. A. PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules, 2007, 8(6), 1966-1972. doi:10.1021/bm070085xhttp://dx.doi.org/10.1021/bm070085x
Tang C.; Sivanandan K.; Stahl B. C.; Fredrickson G. H.; Kramer E. J.; Hawker C. J. Multiple nanoscale templates by orthogonal degradation of a supramolecular block copolymer lithographic system. ACS Nano, 2010, 4(1), 285-291. doi:10.1021/nn901330qhttp://dx.doi.org/10.1021/nn901330q
Curtin D. Y.; Leskowitz S. Cleavage and rearrangement of ethers with base. II. Reaction of the benzhydryl and trityl ethers of benzoin with potassium hydroxide1. J. Am. Chem. Soc., 1951, 73(6), 2633-2636. doi:10.1021/ja01150a063http://dx.doi.org/10.1021/ja01150a063
Xin Y.; Yuan J. Schiff’s base as a stimuli-responsive linker in polymer chemistry. Polym. Chem., 2012, 3(11), 3045-3055. doi:10.1039/c2py20290ehttp://dx.doi.org/10.1039/c2py20290e
Li Y.; Xu Y.; Cao S.; Zhao Y.; Qu T.; Iyoda T.; Chen A. Nanoporous films with sub-10 nm in pore size from acid‐cleavable block copolymers. Macromol. Rapid Commun., 2017, 38(5), 1600662. doi:10.1002/marc.201600662http://dx.doi.org/10.1002/marc.201600662
Kalali E. N.; Wang X.; Wang D. Y. Multifunctional intercalation in layered double hydroxide: toward multifunctional nanohybrids for epoxy resin. J. Mater. Chem. A, 2016, 4(6), 2147-2157. doi:10.1039/c5ta09482hhttp://dx.doi.org/10.1039/c5ta09482h
Liu H.; Lee M. H.; Lee J. Synthesis of new sulfonated polyimide and its photo-crosslinking for polymer electrolyte membrane fuel cells. Macromol. Res., 2009, 17(10), 725-728. doi:10.1007/bf03218605http://dx.doi.org/10.1007/bf03218605
Sui X.; Zhang Z.; Zhang Z.; Wang Z.; Li C.; Yuan H.; Gao L.; Wen L.; Fan X.; Yang L. Biomimetic nanofluidic diode composed of dual amphoteric channels maintains rectification direction over a wide pH range. Angew. Chem. Int. Ed., 2016, 55(42), 13056-13060. doi:10.1002/anie.201606469http://dx.doi.org/10.1002/anie.201606469
Li C.; Jiang H.; Liu P.; Zhai Y.; Yang X.; Gao L.; Jiang L. One porphyrin per chain self-assembled helical ion-exchange channels for ultrahigh osmotic energy conversion. J. Am. Chem. Soc., 2022, 144(21), 9472-9478. doi:10.1021/jacs.2c02798http://dx.doi.org/10.1021/jacs.2c02798
Luo J.; Xie Z.; Lam J. W.; Cheng L.; Chen H.; Qiu C.; Kwok H. S.; Zhan X.; Liu Y.; Zhu D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun., 2001, 18, 1740-1741. doi:10.1039/b105159hhttp://dx.doi.org/10.1039/b105159h
Hong Y.; Lam J. W.; Tang B. Z. Aggregation-induced emission. Chem. Soc. Rev., 2011, 40(11), 5361-5388. doi:10.1039/c1cs15113dhttp://dx.doi.org/10.1039/c1cs15113d
Hong Y.; Lam J. W.; Tang B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun., 2009, 29, 4332-4353. doi:10.1039/b904665hhttp://dx.doi.org/10.1039/b904665h
Mes T.; Smulders M. M.; Palmans A. R.; Meijer E. W. Hydrogen-bond engineering in supramolecular polymers: Polarity influence on the self-assembly of benzene-1,3,5-tricarboxamides. Macromocules, 2010, 43(4), 1981-1991. doi:10.1021/ma9026096http://dx.doi.org/10.1021/ma9026096
Stals P. J.; Haveman J. F.; Martín-Rapún R.; Fitié C. F.; Palmans A. R.; Meijer E. W. The influence of oligo (ethylene glycol) side chains on the self-assembly of benzene-1,3,5-tricarboxamides in the solid state and in solution. J. Mater. Chem., 2009, 19(1), 124-130. doi:10.1039/b816418ehttp://dx.doi.org/10.1039/b816418e
Coulibaly S.; Heinzmann C.; Beyer F. L.; Balog S.; Weder C.; Fiore G. L. Supramolecular polymers with orthogonal functionality. Macromocules, 2014, 47(24), 8487-8496. doi:10.1021/ma501492uhttp://dx.doi.org/10.1021/ma501492u
An S. Y.; Arunbabu D.; Noh S. M.; Song Y. K.; Oh J. K. Recent strategies to develop self-healable crosslinked polymeric networks. Chem. Commun., 2015, 51(66), 13058-13070. doi:10.1039/c5cc04531bhttp://dx.doi.org/10.1039/c5cc04531b
Li C.; Wen L.; Sui X.; Cheng Y.; Gao L.; Jiang L. Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci. Adv., 2021, 7(21), eabg2183. doi:10.1126/sciadv.abg2183http://dx.doi.org/10.1126/sciadv.abg2183
Chen Q.; Masser H.; Shiau H. S.; Liang S.; Runt J.; Painter P. C.; Colby R. H. Linear viscoelasticity and fourier transform infrared spectroscopy of polyether-ester-sulfonate copolymer ionomers. Macromocules, 2014, 47(11), 3635-3644. doi:10.1021/ma5008144http://dx.doi.org/10.1021/ma5008144
Rief M.; Oesterhelt F.; Heymann B.; Gaub H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science, 1997, 275(5304), 1295-1297. doi:10.1126/science.275.5304.1295http://dx.doi.org/10.1126/science.275.5304.1295
Perkins T. T.; Smith D. E.; Chu S. Direct observation of tube-like motion of a single polymer chain. Science, 1994, 264(5160), 819-822. doi:10.1126/science.8171335http://dx.doi.org/10.1126/science.8171335
Song Z.; Lv X.; Gao L.; Jiang L. Dramatic differences in the fluorescence of AIEgen-doped micro- and macrophase separated systems. J. Mater. Chem. C, 2018, 6(1), 171-177. doi:10.1039/c7tc04771ahttp://dx.doi.org/10.1039/c7tc04771a
Zhi, Y. F.; Li, C.; Song, Z. H; Yang, Z. J.; Ma, H. W.; Gao, L. C. The location-influenced fluorescence of AIEgens in the microphase-separated structures. Chinese J. Polym. Sci., 2019, 37(11), 1060-1064. doi:10.1007/s10118-019-2333-xhttp://dx.doi.org/10.1007/s10118-019-2333-x
Yang Y.; Zhang S.; Zhang X.; Gao L.; Wei Y.; Ji Y. Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nat. Commun., 2019, 10(1), 1-8. doi:10.1038/s41467-019-11144-6http://dx.doi.org/10.1038/s41467-019-11144-6
Qin B.; Zhang S.; Sun P.; Tang B.; Yin Z.; Cao X.; Chen Q.; Xu J. F.; Zhang X. Tough and multi-recyclable cross-linked supramolecular polyureas via incorporating noncovalent bonds into main-chains. Adv. Mater., 2020, 32(36), 2000096. doi:10.1002/adma.202000096http://dx.doi.org/10.1002/adma.202000096
Botiz I.; Darling S. B. Optoelectronics using block copolymers. Mater. Today, 2010, 13(5), 42-51. doi:10.1016/s1369-7021(10)70083-3http://dx.doi.org/10.1016/s1369-7021(10)70083-3
Ma H.; Wang S.; Yu B.; Sui X.; Shen Y.; Cong H. Bioinspired nanochannels based on polymeric membranes. Sci. China Mater., 2021, 64(6), 1320-1342. doi:10.1007/s40843-020-1549-4http://dx.doi.org/10.1007/s40843-020-1549-4
Hao J.; Yang T.; He X.; Tang H.; Sui X. Hierarchical nanochannels based on rod-coil block copolymer for ion transport and energy conversion. Giant, 2021, 5100049. doi:10.1016/j.giant.2021.100049http://dx.doi.org/10.1016/j.giant.2021.100049
Zhang Z.; He L.; Zhu C.; Qian Y.; Wen L.; Jiang L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun., 2020, 11(1), 1-8. doi:10.1038/s41467-020-14674-6http://dx.doi.org/10.1038/s41467-020-14674-6
Wen L.; Xiao K.; Sainath A. V. S.; Komura M.; Kong X. Y.; Xie G.; Zhang Z.; Tian Y.; Iyoda T.; Jiang L. Engineered asymmetric composite membranes with rectifying properties. Adv. Mater., 2016, 28(4), 757-763. doi:10.1002/adma.201504960http://dx.doi.org/10.1002/adma.201504960
Vlassiouk I.; Siwy Z. S.; Nanofluidic diode. Nano Lett., 2007, 7(3), 552-556. doi:10.1021/nl062924bhttp://dx.doi.org/10.1021/nl062924b
Yan R.; Liang W.; Fan R.; Yang P. Nanofluidic diodes based on nanotube heterojunctions. Nano Lett., 2009, 9(11), 3820-3825. doi:10.1021/nl9020123http://dx.doi.org/10.1021/nl9020123
Karnik R.; Duan C.; Castelino K.; Daiguji H.; Majumdar A. Rectification of ionic current in a nanofluidic diode. Nano Lett., 2007, 7(3), 547-551. doi:10.1021/nl062806ohttp://dx.doi.org/10.1021/nl062806o
Farrell A. C.; Senanayake P.; Meng X.; Hsieh N. Y.; Huffaker D. L. Diode characteristics approaching bulk limits in GaAs nanowire array photodetectors. Nano Lett., 2017, 17(4), 2420-2425. doi:10.1021/acs.nanolett.7b00024http://dx.doi.org/10.1021/acs.nanolett.7b00024
Li C.; Liu P.; Zhai Y.; Yao L.; Lin H.; Gao L.; Jiang L. Unconventional dual ion selectivity determined by the forward side of a bipolar channel toward ion flux. ACS Appl. Mater. Interfaces, 2022, 14(1), 2230-2236. doi:10.1021/acsami.1c18474http://dx.doi.org/10.1021/acsami.1c18474
Keasling J.; Garcia Martin H.; Lee T. S.; Mukhopadhyay A.; Singer S. W.; Sundstrom E. Microbial production of advanced biofuels. Nat. Rev. Mater., 2021, 19(11), 701-715. doi:10.1038/s41579-021-00577-whttp://dx.doi.org/10.1038/s41579-021-00577-w
Deshmukh R.; Phadke A.; Callaway D. S. Least-cost targets and avoided fossil fuel capacity in india’s pursuit of renewable energy. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(13), e2008128118. doi:10.1073/pnas.2008128118http://dx.doi.org/10.1073/pnas.2008128118
Logan B. E.; Elimelech M. Membrane-based processes for sustainable power generation using water. Nature, 2012, 488(7411), 313-319. doi:10.1038/nature11477http://dx.doi.org/10.1038/nature11477
Nijmeijer K.; Metz, S. Salinity gradient energy. In: Escobar, I. C., Schäfer, A. I., eds. Sustainability Science and Engineering. Elsevier: Amsterdam, 2010. 95-139. doi:10.1016/s1871-2711(09)00205-0http://dx.doi.org/10.1016/s1871-2711(09)00205-0
Man Z.; Safaei J.; Zhang Z.; Wang Y.; Zhou D.; Li P.; Zhang X.; Jiang L.; Wang G. Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J. Am. Chem. Soc., 2021, 143(39), 16206-16216. doi:10.1021/jacs.1c07392http://dx.doi.org/10.1021/jacs.1c07392
Hao J.; Ning Y.; Hou Y.; Ma S.; Lin C.; Zhao J.; Li C.; Sui X. Polydopamine functionalized graphene oxide membrane with the sandwich structure for osmotic energy conversion. J. Colloid Interf. Sci., 2023, 630, 795-803. doi:10.1016/j.jcis.2022.10.084http://dx.doi.org/10.1016/j.jcis.2022.10.084
Zhang Z.; Wen L.; Jiang L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater., 2021, 6(7), 622-639. doi:10.1038/s41578-021-00300-4http://dx.doi.org/10.1038/s41578-021-00300-4
Turek M.; Bandura B. Renewable energy by reverse electrodialysis. Desalination, 2007, 205(1-3), 67-74. doi:10.1016/j.desal.2006.04.041http://dx.doi.org/10.1016/j.desal.2006.04.041
Długołȩcki P.; Gambier A.; Nijmeijer K.; Wessling M. Practical potential of reverse electrodialysis as process for sustainable energy generation. Environ. Sci. Technol., 2009, 43(17), 6888-6894. doi:10.1021/es9009635http://dx.doi.org/10.1021/es9009635
Wang W.; Hao J.; Sun Q.; Zhao M.; Liu H.; Li C.; Sui X. Carbon nanofibers membrane bridged with graphene nanosheet and hyperbranched polymer for high-performance osmotic energy harvesting. Nano Res., 2022, 10.1007/s12274-022-4634-6. doi:10.1007/s12274-022-4634-6http://dx.doi.org/10.1007/s12274-022-4634-6
Vermaas D. A.; Saakes M.; Nijmeijer K. Doubled power density from salinity gradients at reduced intermembrane distance. Environ. Sci. Technol., 2011, 45(16), 7089-7095. doi:10.1021/es2012758http://dx.doi.org/10.1021/es2012758
Gierke T. D.; Munn G.; Wilson F. The morphology in nafion perfluorinated membrane products, as determined by wide‐ and small‐angle x‐ray studies. J. Polym. Sci., Polym. Phys. Ed., 1981, 19(11), 1687-1704. doi:10.1002/pol.1981.180191103http://dx.doi.org/10.1002/pol.1981.180191103
Hsu W. Y.; Gierke T. D. Ion transport and clustering in nafion perfluorinated membranes. J. Membr. Sci., 1983, 13(3), 307-326. doi:10.1016/s0376-7388(00)81563-xhttp://dx.doi.org/10.1016/s0376-7388(00)81563-x
Kreuer K. D.; Portale G. A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications. Adv. Funt. Mater., 2013, 23(43), 5390-5397. doi:10.1002/adfm.201300376http://dx.doi.org/10.1002/adfm.201300376
Schmidt-Rohr K.; Chen Q. Parallel cylindrical water nanochannels in nafion fuel-cell membranes. Nat. Mater., 2008, 7(1), 75-83. doi:10.1038/nmat2074http://dx.doi.org/10.1038/nmat2074
Chen W.; Wang Q.; Chen J.; Zhang Q.; Zhao X.; Qian Y.; Zhu C.; Yang L.; Zhao Y.; Kong X. Y. Improved ion transport and high energy conversion through hydrogel membrane with 3D interconnected nanopores. Nano Lett., 2020, 20(8), 5705-5713. doi:10.1021/acs.nanolett.0c01087http://dx.doi.org/10.1021/acs.nanolett.0c01087
Chen W.; Zhang Q.; Qian Y.; Xin W.; Hao D.; Zhao X.; Zhu C.; Kong X. Y.; Lu B.; Jiang L. Improved ion transport in hydrogel-based nanofluidics for osmotic energy conversion. ACS Central Sci., 2020, 6(11), 2097-2104. doi:10.1021/acscentsci.0c01054http://dx.doi.org/10.1021/acscentsci.0c01054
Kamcev J.; Freeman B. D. Cracks help membranes to stay hydrated. Nature, 2016, 532(7600), 445-446. doi:10.1038/532445ahttp://dx.doi.org/10.1038/532445a
Xiong P.; Zhang L.; Chen Y.; Peng S.; Yu G. A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries. Angew. Chem. Int. Ed., 2021, 60(47), 24770-24798. doi:10.1002/anie.202105619http://dx.doi.org/10.1002/anie.202105619
Stránská E. Relationships between transport and physical-mechanical properties of ion exchange membranes. Desalin. Water Treat., 2015, 56(12), 3220-3227.
Xu J.; Zhao H.; Li W.; Li P.; Chen C.; Yue Z.; Zou L.; Yang H. Facile strategy for preparing a novel reinforced blend membrane with high cycling stability for vanadium redox flow batteries. Chem. Eng. J., 2022, 433, 133197. doi:10.1016/j.cej.2021.133197http://dx.doi.org/10.1016/j.cej.2021.133197
Russell S. T.; Pereira R.; Vardner J. T.; Jones G. N.; Dimarco C.; West A. C.; Kumar S. K. Hydration effects on the permselectivity-conductivity trade-off in polymer electrolytes. Macromolecules, 2020, 53(3), 1014-1023. doi:10.1021/acs.macromol.9b02291http://dx.doi.org/10.1021/acs.macromol.9b02291
Fan H.; Yip N. Y. Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. J. Membr. Sci., 2019, 573, 668-681. doi:10.1016/j.memsci.2018.11.045http://dx.doi.org/10.1016/j.memsci.2018.11.045
Li C.; Gao L. Specific ion selectivity with a reverse-selective mechanism. Nat. Nanotechnol., 2022, 17, 1130-1131. doi:10.1038/s41565-022-01216-yhttp://dx.doi.org/10.1038/s41565-022-01216-y
Xu J.; Lavan D. A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol., 2008, 3(11), 666-670. doi:10.1038/nnano.2008.274http://dx.doi.org/10.1038/nnano.2008.274
Schroeder T. B.; Guha A.; Lamoureux A.; vanRenterghem G.; Sept D.; Shtein M.; Yang J.; Mayer M. An electric-eel-inspired soft power source from stacked hydrogels. Nature, 2017, 552(7684), 214-218. doi:10.1038/nature24670http://dx.doi.org/10.1038/nature24670
Doyle D. A.; Cabral J. M.; Pfuetzner R. A.; Kuo A.; Gulbis J. M.; Cohen S. L.; Chait B. T.; MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 1998, 280(5360), 69-77. doi:10.1126/science.280.5360.69http://dx.doi.org/10.1126/science.280.5360.69
Dutzler R.; Campbell E. B.; Cadene M.; Chait B. T.; MacKinnon R. X-ray structure of a clc chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature, 2002, 415(6869), 287-294. doi:10.1038/415287ahttp://dx.doi.org/10.1038/415287a
Dutzler R.; Campbell E. B.; MacKinnon R. Gating the selectivity filter in ClC chloride channels. Science, 2003, 300(5616), 108-112. doi:10.1126/science.1082708http://dx.doi.org/10.1126/science.1082708
Pusch M.; Ludewig U.; Rehfeldt A.; Jentsch T. J. Gating of the voltage-dependent chloride channel ClC-0 by the permeant anion. Nature, 1995, 373(6514), 527-531. doi:10.1038/373527a0http://dx.doi.org/10.1038/373527a0
Sui X.; Zhang Z.; Li C.; Gao L.; Zhao Y.; Yang L.; Wen L.; Jiang L. Engineered nanochannel membranes with diode-like behavior for energy conversion over a wide pH range. ACS Appl. Mater. Interfaces, 2018, 11(27), 23815-23821. doi:10.1021/acsami.8b02578http://dx.doi.org/10.1021/acsami.8b02578
Zhang Z.; Sui X.; Li P.; Xie G.; Kong X. Y.; Xiao K.; Gao L.; Wen L.; Jiang L. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc., 2017, 139(26), 8905-8914. doi:10.1021/jacs.7b02794http://dx.doi.org/10.1021/jacs.7b02794
Jia Z.; Wang B.; Song S.; Fan Y. Blue energy: Current technologies for sustainable power generation from water salinity gradient. Renew. Sust. Energ. Rev., 2014, 31, 91-100. doi:10.1016/j.rser.2013.11.049http://dx.doi.org/10.1016/j.rser.2013.11.049
Zhang X.; Song B.; Jiang L. Driving force of molecular/ionic superfluid formation. CCS Chem., 2021, 3(8), 1258-1266. doi:10.31635/ccschem.021.202100961http://dx.doi.org/10.31635/ccschem.021.202100961
0
Views
90
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution