浏览全部资源
扫码关注微信
1.广东省低碳化学与过程节能重点实验室 中山大学材料科学与工程学院 广州 510006
2.中山大学化学工程与技术学院 珠海 519082
Min Xiao, E-mail: stsxm@mail.sysu.edu.cn
Published:20 August 2023,
Published Online:17 February 2023,
Received:01 December 2022,
Accepted:13 January 2023
扫 描 看 全 文
张田伟,梁嘉欣,岳双双等.可生物降解的半芳香聚酯聚碳酸丙烯酯共聚物/聚己二酸-对苯二甲酸丁二酯共混物的制备及性能表征[J].高分子学报,2023,54(08):1144-1154.
Zhang Tian-wei,Liang Jia-xin,Yue Shuang-shuang,et al.Preparation and Characterization of Biodegradable Poly(propylene carbonate-co-phthalate)/Poly(butylene adipate-co-terephthalate) Blends[J].ACTA POLYMERICA SINICA,2023,54(08):1144-1154.
张田伟,梁嘉欣,岳双双等.可生物降解的半芳香聚酯聚碳酸丙烯酯共聚物/聚己二酸-对苯二甲酸丁二酯共混物的制备及性能表征[J].高分子学报,2023,54(08):1144-1154. DOI: 10.11777/j.issn1000-3304.2022.22415.
Zhang Tian-wei,Liang Jia-xin,Yue Shuang-shuang,et al.Preparation and Characterization of Biodegradable Poly(propylene carbonate-co-phthalate)/Poly(butylene adipate-co-terephthalate) Blends[J].ACTA POLYMERICA SINICA,2023,54(08):1144-1154. DOI: 10.11777/j.issn1000-3304.2022.22415.
采用转矩流变仪对半芳香聚酯聚碳酸丙烯酯共聚物(poly(propylene carbonate-
co
-phthalate
PPC-P)和聚己二酸-对苯二甲酸丁二酯(poly(butylene adipate-
co
-terephthalate
PBAT)进行熔融共混,制备了不同比例的PPC-P/PBAT共混物. 研究了不同共混温度和PBAT含量对共混物的力学性能、流变特性、热性能、微观形貌和阻隔性能的影响. 结果表明,PPC-P/PBAT共混物的性能受共混温度和共混物组分的影响. 在PPC-P和PBAT熔体黏度相当的温度下进行共混时得到的共混物性能最佳,扫描电子显微镜(SEM)图像显示在该温度下制备的共混物中2种聚合物能均匀分散且相容性较好;PBAT的加入能够大幅提升材料的热稳定性、断裂伸长率等性能,但同时也会降低材料对水、氧的阻隔性能. 综合考虑,PBAT含量为30%~50%的PPC-P/PBAT共混材料是性能优异的食品/药品包装材料,具有优异的拉伸和阻隔性能.
Poly(propylene carbonate-
co
-phthalate) (PPC-P)/poly(butylene adipate-
co
-terephthalate) (PBAT) blends with various composition ratios were prepared
via
melt mixing using a torque rheometer. The effects of blending temperature and PBAT content on mechanical behavior
rheological responses
thermal properties
phase morphology and barrier properties of the blends were investigated. Results showed that the properties of PPC-P/PBAT blends were affected by the blend temperature and the composition of the blends. The best performance of the blends is obtained when blending at the temperature where the melt viscosity of PPC-P and PBAT is equivalent
and SEM microphotographs showed that the two polymers in the blends prepared at this temperature could be uniformly dispersed and have good compatibility; Incorporating of PBAT effectively improved the thermal stability
elongation at break and other properties of the blends
but it will also reduce the barrier properties of the material. In a word
PPC-P/PBAT blends with PBAT content of 30 wt%‒50 wt% have excellent tensile and barrier properties and hence have great potential for green food/drug packaging applications.
二氧化碳生物可降解塑料聚己二酸-对苯二甲酸丁二酯阻隔性能包装材料
Carbon dioxide (CO2)Biodegradable plasticsPoly(butylene adipate-co-terephthalate) (PBAT)Barrier performancePackaging
de Matos Costa A. R.; Crocitti A.; Hecker de Carvalho L. H.; Carroccio S. C.; Cerruti P.; Santagata G. Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends. Polymers, 2020, 12(10), 2317. doi:10.3390/polym12102317http://dx.doi.org/10.3390/polym12102317
Ye S. X.; Wang S. J.; Lin L. M.; Xiao M.; Meng Y. Z. CO2 derived biodegradable polycarbonates: synthesis, modification and applications. Adv. Ind. Eng. Polym. Res., 2019, 2(4), 143-160. doi:10.1016/j.aiepr.2019.09.004http://dx.doi.org/10.1016/j.aiepr.2019.09.004
Yang H. R.; Jia G.; Wu H.; Ye C. C.; Yuan K.; Liu S. L.; Zhou L. M.; Xu H.; Gao L. J.; Cui J.; Fang S. M. Design of fully biodegradable super-toughened PLA/PBAT blends with asymmetric composition via reactive compatibilization and controlling morphology. Mater. Lett., 2022, 329, 133067. doi:10.1016/j.matlet.2022.133067http://dx.doi.org/10.1016/j.matlet.2022.133067
Wu F.; Misra M.; Mohanty A. K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci., 2021, 117, 101395. doi:10.1016/j.progpolymsci.2021.101395http://dx.doi.org/10.1016/j.progpolymsci.2021.101395
Xu Y. H.; Lin L. M.; Xiao M.; Wang S. J.; Smith A. T.; Sun L. Y.; Meng Y. Z. Synthesis and properties of CO2-based plastics: environmentally-friendly, energy-saving and biomedical polymeric materials. Prog. Polym. Sci., 2018, 80, 163-182. doi:10.1016/j.progpolymsci.2018.01.006http://dx.doi.org/10.1016/j.progpolymsci.2018.01.006
Luinstra G. A. Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: Catalysis and material properties. Polym. Rev., 2008, 48(1), 192-219. doi:10.1080/15583720701834240http://dx.doi.org/10.1080/15583720701834240
Qin J. X.; Lin L. M.; Wang S. J.; Ye S. X.; Luo W. K.; Xiao M.; Han D. M.; Meng Y. Z. Multiblock copolymers of PPC with oligomeric PBS: with low brittle-toughness transition temperature. RSC Adv., 2018, 8(26), 14722-14731. doi:10.1039/c8ra01588khttp://dx.doi.org/10.1039/c8ra01588k
Yang G. W.; Wu G. P. High-efficiency construction of CO2-based healable thermoplastic elastomers via a tandem synthetic strategy. ACS Sustain. Chem. Eng., 2019, 7(1), 1372-1380. doi:10.1021/acssuschemeng.8b05084http://dx.doi.org/10.1021/acssuschemeng.8b05084
Li X.; Hu C. Y.; Pang X.; Duan R. L.; Chen X. S. One-pot copolymerization of epoxides/carbon dioxide and lactide using a ternary catalyst system. Catal. Sci. Technol., 2018, 8(24), 6452-6457. doi:10.1039/c8cy01856ahttp://dx.doi.org/10.1039/c8cy01856a
Song P. F.; Xiao M.; Du F. G.; Wang S. J.; Gan L. Q.; Liu G. Q.; Meng Y. Z. Synthesis and properties of aliphatic polycarbonates derived from carbon dioxide, propylene oxide and maleic anhydride. J. Appl. Polym. Sci., 2008, 109(6), 4121-4129. doi:10.1002/app.28449http://dx.doi.org/10.1002/app.28449
Longo J. M.; Sanford M. J.; Coates G. W. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: Structure-property relationships. Chem. Rev., 2016, 116(24), 15167-15197. doi:10.1021/acs.chemrev.6b00553http://dx.doi.org/10.1021/acs.chemrev.6b00553
Liang J. X.; Ye S. X.; Wang W. J.; Fan C. X.; Wang S. J.; Han D. M.; Liu W.; Cui Y.; Hao L. M.; Xiao M.; Meng Y. Z. Performance tailorable terpolymers synthesized from carbon dioxide, phthalic anhydride and propylene oxide using Lewis acid-base dual catalysts. J. CO2 Util., 2021, 49, 101558. doi:10.1016/j.jcou.2021.101558http://dx.doi.org/10.1016/j.jcou.2021.101558
Chen S. Y.; Xiao M.; Wang S. J.; Han D. M.; Meng Y. Z. Novel ternary block copolymerization of carbon dioxide with cyclohexene oxide and propylene oxide using zinc complex catalyst. J. Polym. Res., 2012, 19(2), 9800. doi:10.1007/s10965-011-9800-6http://dx.doi.org/10.1007/s10965-011-9800-6
Liu Z. R.; Hu J. J.; Gao F. X.; Cao H.; Zhou Q. H.; Wang X. H. Biodegradable and resilient poly(propylene carbonate) based foam from high pressure CO2 foaming. Polym. Degrad. Stab., 2019, 165, 12-19. doi:10.1016/j.polymdegradstab.2019.04.019http://dx.doi.org/10.1016/j.polymdegradstab.2019.04.019
Pan H. W.; Hao Y. P.; Zhao Y.; Lang X. Z.; Zhang Y.; Wang Z.; Zhang H. L.; Dong L. S. Improved mechanical properties, barrier properties and degradation behavior of poly(butylenes adipate-co-terephthalate)/poly(propylene carbonate) films. Korean J. Chem. Eng., 2017, 34(5), 1294-1304. doi:10.1007/s11814-017-0066-5http://dx.doi.org/10.1007/s11814-017-0066-5
Fourati Y.; Tarrés Q.; Mutjé P.; Boufi S. PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydr. Polym., 2018, 199, 51-57. doi:10.1016/j.carbpol.2018.07.008http://dx.doi.org/10.1016/j.carbpol.2018.07.008
Wang X.; Peng S. X.; Chen H.; Yu X. L.; Zhao X. P. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in situ reactive compatibilization. Compos. B Eng., 2019, 173, 107028. doi:10.1016/j.compositesb.2019.107028http://dx.doi.org/10.1016/j.compositesb.2019.107028
Jalali Dil E.; Carreau P. J.; Favis B. D. Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Polymer, 2015, 68, 202-212. doi:10.1016/j.polymer.2015.05.012http://dx.doi.org/10.1016/j.polymer.2015.05.012
Al-Itry R.; Lamnawar K.; Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stabil., 2012, 97(10), 1898-1914. doi:10.1016/j.polymdegradstab.2012.06.028http://dx.doi.org/10.1016/j.polymdegradstab.2012.06.028
Jiang G.; Li H. L.; Wang F. Structure of PBAT/PPC blends prepared by in situ reactive compatibilization and properties of their blowing films. Mater. Today Commun., 2021, 27, 102215. doi:10.1016/j.mtcomm.2021.102215http://dx.doi.org/10.1016/j.mtcomm.2021.102215
Zhang M.; Jiang C.; Wu Q. H.; Zhang G. L.; Liang F. X.; Yang Z. Z. Poly(lactic acid)/poly(butylene succinate) (PLA/PBS) layered composite gas barrier membranes by anisotropic Janus nanosheets compartibilizers. ACS Macro Lett., 2022, 11(5), 657-662. doi:10.1021/acsmacrolett.2c00139http://dx.doi.org/10.1021/acsmacrolett.2c00139
Wang J. F.; Zhang X. H.; Jiang L.; Qiao J. L. Advances in toughened polymer materials by structured rubber particles. Prog. Polym. Sci., 2019, 98, 101160. doi:10.1016/j.progpolymsci.2019.101160http://dx.doi.org/10.1016/j.progpolymsci.2019.101160
Wu D. D.; Li W.; Hao Y. P.; Li Z. L.; Yang H. L.; Zhang H. L.; Zhang H. X.; Dong L. S. Mechanical properties, miscibility, thermal stability, and rheology of poly(propylene carbonate) and poly(ethylene-co-vinyl acetate) blends. Polym. Bull., 2015, 72(4), 851-865. doi:10.1007/s00289-015-1310-yhttp://dx.doi.org/10.1007/s00289-015-1310-y
李爱英, 张帆, 朱亚辉. PC/HBPS共混物流变性能的研究. 现代塑料加工应用, 2008, 20(4), 20-22. doi:10.3969/j.issn.1004-3055.2008.04.006http://dx.doi.org/10.3969/j.issn.1004-3055.2008.04.006
Song J. S.; Zhou H. F.; Wang X. D.; Zhang Y. X.; Mi J. G. Role of chain extension in the rheological properties, crystallization behaviors, and microcellular foaming performances of poly(butylene adipate-co-terephthalate). J. Appl. Polym. Sci., 2019, 136(14), 47322. doi:10.1002/app.47322http://dx.doi.org/10.1002/app.47322
Hao Y. P.; Yang H. L.; Zhang H. L.; Zhang G. B.; Bai Y. G.; Gao G.; Dong L. S. Effect of an eco-friendly plasticizer on rheological, thermal and mechanical properties of biodegradable poly(propylene carbonate). Polym. Degrad. Stabil., 2016, 128, 286-293. doi:10.1016/j.polymdegradstab.2016.03.032http://dx.doi.org/10.1016/j.polymdegradstab.2016.03.032
王艳色, 唐萍, 李战胜, 李健丰. 表征聚合物共混体系相容性的流变学方法. 高分子通报, 2021, (10), 79-85.
Jiang G.; Wang F.; Zhang S. D.; Huang H. X. Structure and improved properties of PPC/PBAT blends via controlling phase morphology based on melt viscosity. J. Appl. Polym. Sci., 2020, 137(31), 48924. doi:10.1002/app.48924http://dx.doi.org/10.1002/app.48924
Wang X. Y.; Weng Y. X.; Wang W.; Huang Z. G.; Wang Y. Z. Modification of poly(propylene carbonate) with chain extender ADR-4368 to improve its thermal, barrier, and mechanical properties. Polym. Test., 2016, 54, 301-307. doi:10.1016/j.polymertesting.2016.07.024http://dx.doi.org/10.1016/j.polymertesting.2016.07.024
Ito K.; Saito Y.; Yamamoto T.; Ujihira Y.; Nomura K. Correlation study between oxygen permeability and free volume of ethylene-vinyl alcohol copolymer through positronium lifetime measurement. Macromolecules, 2001, 34(18), 6153-6155. doi:10.1021/ma001813ahttp://dx.doi.org/10.1021/ma001813a
Gerlowski, L. E. Water transport through polymers. In: Koros, W. J. ed. Barrier Polymers and Structures. Washington, DC: American Chemical Society, 1990. 177-191. doi:10.1021/bk-1990-0423.ch008http://dx.doi.org/10.1021/bk-1990-0423.ch008
0
Views
94
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution