浏览全部资源
扫码关注微信
1.北京师范大学化学学院 能量转换与存储北京市重点实验室 北京 100875
2.上海恩捷新材料科技有限公司 上海 201399
3.青岛大学纺织服装学院 青岛 266071
Jian-jun Zhou, E-mail: pla_zjj@bnu.edu.cn
Lin Li E-mail: lilinll@bnu.edu.cn
Published:20 May 2023,
Published Online:17 February 2023,
Received:03 December 2022,
Accepted:16 January 2023
扫 描 看 全 文
向甜琦,鲍晋珍,闫晓清等.隔膜对锂-铜电池短路时间的影响[J].高分子学报,2023,54(05):655-664.
Xiang Tian-qi,Bao Jin-zhen,Yan Xiao-qing,et al.Effect of Separator on Short-circuit Time of Lithium-Copper Batteries[J].ACTA POLYMERICA SINICA,2023,54(05):655-664.
向甜琦,鲍晋珍,闫晓清等.隔膜对锂-铜电池短路时间的影响[J].高分子学报,2023,54(05):655-664. DOI: 10.11777/j.issn1000-3304.2022.22418.
Xiang Tian-qi,Bao Jin-zhen,Yan Xiao-qing,et al.Effect of Separator on Short-circuit Time of Lithium-Copper Batteries[J].ACTA POLYMERICA SINICA,2023,54(05):655-664. DOI: 10.11777/j.issn1000-3304.2022.22418.
隔膜在锂离子电池中起着防止正负极直接短路和提供离子传输通道的作用,决定着电池的安全性能. 在本文中,我们利用锂-铜电池的短路时间建立了一种评价隔膜安全性能的方法. 通过对电池短路时间的研究发现,对于同一种类型的隔膜,短路时间与隔膜厚度和内阻的线性相关度较高,隔膜厚度和内阻的增加均能延长电池的短路时间. 同一厚度不同类型的隔膜,其电池的短路时间与隔膜自身的微孔结构相关. 电池的短路时间与隔膜的穿刺强度之间的线性相关程度较低,结合电池短路后隔膜表面枝晶形貌的观察,我们推测枝晶是沿隔膜的孔道持续生长最终穿透隔膜,而非刺穿隔膜导致的电池短路. 利用不同厚度的隔膜组装锂硫电池,发现循环寿命与隔膜厚度具有显著线性相关性,验证了测试方法在实际电池使用中的有效性. 同时,研究也证实,利用功能隔膜调控锂的沉积行为、抑制锂的枝晶沉积能极大延长电池的短路时间,提升电池的安全性能,这为新型高安全性复合隔膜及电池的研究和设计提供了新的思路和理论依据.
In lithium ion batteries
the separator plays an important role in preventing the direct short circuit between cathode and anode
and providing channels for ion transportation at the same time
which determines the safety performance of the batteries. In this study
a method for evaluating the safety performance of the separator has been established by using the short circuit time of lithium-copper batteries. The results show that the battery short-circuit time has a high linear correlation with the thickness and internal resistance for the same type of separator. Increasing the separator thickness and internal resistance can prolong the battery’s short-circuit time. For different types of separators with the same thickness
the short circuit time is related to the microporous structure. There is a low linear correlation between the short circuit time of the battery and the puncture strength of the separator. Combined with the morphology of lithium dendrite on the separator surface after the battery short circuit
it is supposed that the battery short circuit is caused by the dendrite growing along the micropores of the separator
rather than puncturing the separator. The lithium-sulfur battery was assembled by using separator with different thicknesses. A significant linear correlation is observed between cycle life and separator thickness
which verifies the effectiveness of the method in the actual battery. At the same time
the results also confirm that the short circuit time of the battery can be greatly prolonged to improve the safety performance of the battery by regulating the lithium deposition behavior and inhibiting the lithium dendrite growth using functional separator
which provides new ideas and theoretical basis for developing and designing new types of composite separator and batteries with high safety.
锂金属电池短路时间功能复合隔膜安全性
Lithium ion batteryShort circuit timeFunctional composite separatorBattery safety
Wu F. X.; Maier J.; Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev., 2020, 49(5), 1569-1614. doi:10.1039/c7cs00863ehttp://dx.doi.org/10.1039/c7cs00863e
Tian Y. S.; Zeng G. B.; Rutt A.; Shi T.; Kim H.; Wang J. Y.; Koettgen J.; Sun Y. Z.; Ouyang B.; Chen T. N.; Lun Z. Y.; Rong Z. Q.; Persson K.; Ceder G. Promises and challenges of next-generation beyond Li-ion batteries for electric vehicles and grid decarbonization. Chem. Rev., 2021, 121(3), 1623-1669. doi:10.1021/acs.chemrev.0c00767http://dx.doi.org/10.1021/acs.chemrev.0c00767
Zhang C.; Liang H. Q.; Pi J. K.; Wu G. P.; Xu Z. K. Polypropylene separators with robust mussel-inspired coatings for high lithium-ion battery performances. Chinese J. Polym. Sci., 2019, 37(10), 1015-1022. doi:10.1007/s10118-019-2310-4http://dx.doi.org/10.1007/s10118-019-2310-4
Yuan M. Q.; Liu K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries. J. Energy Chem., 2020, 43, 58-70. doi:10.1016/j.jechem.2019.08.008http://dx.doi.org/10.1016/j.jechem.2019.08.008
Xiang Y. Y.; Li J. S.; Lei J. H.; Liu D.; Xie Z. Z.; Qu D. Y.; Li K.; Deng T. F.; Tang H. L. Advanced separators for lithium-ion and lithium-sulfur batteries: A review of recent progress. ChemSusChem, 2016, 9(21), 3023-3039. doi:10.1002/cssc.201600943http://dx.doi.org/10.1002/cssc.201600943
Jang J.; Oh J.; Jeong H.; Kang W.; Jo C. A review of functional separators for lithium metal battery applications. Materials (Basel), 2020, 13(20), 4625. doi:10.3390/ma13204625http://dx.doi.org/10.3390/ma13204625
万纪强, 张金明, 郑学晶, 贾锋伟, 余坚, 张军. 用于锂离子电池的阻燃型纤维素基复合气凝胶膜. 高分子学报, 2020, 51(8), 933-941. doi:10.11777/j.issn1000-330.2020.20081http://dx.doi.org/10.11777/j.issn1000-330.2020.20081
Xu W.; Wang J. L.; Ding F.; Chen X. L.; Nasybulin E.; Zhang Y. H.; Zhang J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 2014, 7(2), 513-537. doi:10.1039/c3ee40795khttp://dx.doi.org/10.1039/c3ee40795k
Cheng X. B.; Zhang R.; Zhao C. Z.; Zhang Q. Toward safe lithium metal anode in rechargeable batteries. Chem. Rev., 2017, 117(15), 10403-10473. doi:10.1021/acs.chemrev.7b00115http://dx.doi.org/10.1021/acs.chemrev.7b00115
胡华坤, 薛文东, 李勇, 蒋朋. 锂离子电池安全性保护措施研究进展. 高分子学报, 2022, 53(5), 457-473. doi:10.11777/j.issn1000-3304.2021.21392http://dx.doi.org/10.11777/j.issn1000-3304.2021.21392
Shen X.; Liu H.; Cheng X. B.; Yan C.; Huang J. Q. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Storage Mater., 2018, 12, 161-175. doi:10.1016/j.ensm.2017.12.002http://dx.doi.org/10.1016/j.ensm.2017.12.002
Wang L. P.; Wu Z. R.; Zou J.; Gao P.; Niu X. B.; Li H.; Chen L. Q. Li-free cathode materials for high energy density lithium batteries. Joule, 2019, 3(9), 2086-2102. doi:10.1016/j.joule.2019.07.011http://dx.doi.org/10.1016/j.joule.2019.07.011
刘智, 董甜甜, 张焕瑞, 柳伟, 崔光磊. 锂离子电池高电压正极粘结剂的研究进展. 高分子学报, 2021, 52(3), 235-252. doi:10.11777/j.issn1000-3304.2020.20207http://dx.doi.org/10.11777/j.issn1000-3304.2020.20207
Pu J.; Li J. C.; Zhang K.; Zhang T.; Li C. W.; Ma H. X.; Zhu J.; Braun P. V.; Lu J.; Zhang H. G. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat. Commun., 2019, 10(1), 1896. doi:10.1038/s41467-019-09932-1http://dx.doi.org/10.1038/s41467-019-09932-1
Liu H.; Cheng X. B.; Huang J. Q.; Yuan H.; Lu Y.; Yan C.; Zhu G. L.; Xu R.; Zhao C. Z.; Hou L. P.; He C. X.; Kaskel S.; Zhang Q. Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett., 2020, 5(3), 833-843. doi:10.1021/acsenergylett.9b02660http://dx.doi.org/10.1021/acsenergylett.9b02660
Chen X. R.; Zhao B. C.; Yan C.; Zhang Q. Review on Li deposition in working batteries: from nucleation to early growth. Adv. Mater., 2021, 33(8), e2004128. doi:10.1002/adma.202004128http://dx.doi.org/10.1002/adma.202004128
Ke X. Y.; Wang Y.; Dai L. M.; Yuan C. Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: lithium dendrites. Energy Storage Mater., 2020, 33, 309-328. doi:10.1016/j.ensm.2020.07.024http://dx.doi.org/10.1016/j.ensm.2020.07.024
Liu K.; Zhuo D.; Lee H. W.; Liu W.; Lin D. C.; Lu Y. Y.; Cui Y. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv. Mater., 2017, 29(4), 1603987. doi:10.1002/adma.201603987http://dx.doi.org/10.1002/adma.201603987
Jie Y. L.; Liu X. J.; Lei Z. W.; Wang S. Y.; Chen Y. W.; Huang F. Y.; Cao R. G.; Zhang G. Q.; Jiao S. H. Enabling high-voltage lithium metal batteries by manipulating solvation structure in ester electrolyte. Angew. Chem. Int. Ed., 2020, 59(9), 3505-3510. doi:10.1002/anie.201914250http://dx.doi.org/10.1002/anie.201914250
Yan Y.; Kong Q. R.; Sun C. C.; Yuan J. J.; Huang Z.; Fang L. F.; Zhu B. K.; Song Y. Z. Copolymer-assisted polypropylene separator for fast and uniform lithium ion transport in lithium-ion batteries. Chinese J. Polym. Sci., 2020, 38(12), 1313-1324. doi:10.1007/s10118-020-2455-1http://dx.doi.org/10.1007/s10118-020-2455-1
Lu Y. Y.; Korf K.; Kambe Y.; Tu Z. Y.; Archer L. A. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed., 2014, 53(2), 488-492. doi:10.1002/anie.201307137http://dx.doi.org/10.1002/anie.201307137
Wu H.; Zhuo D.; Kong D. S.; Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun., 2014, 5, 5193. doi:10.1038/ncomms6193http://dx.doi.org/10.1038/ncomms6193
An H.; Roh Y.; Jo Y.; Lee H.; Lim M.; Lee M. Y.; Lee Y. M.; Lee H. Separator dependency on cycling stability of lithium metal batteries under practical conditions. Energy Environ. Mater., 2022, Doi: 10.1002/eem2.12397.http://dx.doi.org/10.1002/eem2.12397.
Kang D. M.; Hart N.; Xiao M. Y.; Lemmon J. P. Short circuit of symmetrical Li/Li cell in Li metal anode research. Acta Phys. Chim. Sin., 2020, 2008013. doi:10.3866/pku.whxb202008013http://dx.doi.org/10.3866/pku.whxb202008013
Bai P.; Li J.; Brushett F. R.; Bazant M. Z.. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci., 2016, 9(10), 3221-3229. doi:10.1039/c6ee01674jhttp://dx.doi.org/10.1039/c6ee01674j
Park S. H.; Lee Y. J. Morphological control of electrodeposited lithium metal via seeded growth: stepwise spherical to fibrous lithium growth. J. Mater. Chem. A, 2021, 9(3), 1803-1811. doi:10.1039/d0ta10006dhttp://dx.doi.org/10.1039/d0ta10006d
Yan J.; Liu F. Q.; Hu Z. Y.; Gao J.; Zhou W. D.; Huo H.; Zhou J. J.; Li L. Realizing dendrite-free lithium deposition with a composite separator. Nano Lett., 2020, 20(5), 3798-3807. doi:10.1021/acs.nanolett.0c00819http://dx.doi.org/10.1021/acs.nanolett.0c00819
Xu R.; Ding J. F.; Ma X. X.; Yan C.; Yao Y. X.; Huang J. Q. Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv. Mater., 2021, 33(52), e2105962. doi:10.1002/adma.202170413http://dx.doi.org/10.1002/adma.202170413
胡志宇, 李利平, 周建军, 李林. 无机复合锂离子电池隔膜的制备及性能研究. 高分子学报, 2015, (11), 1288-1293. doi:10.11777/j.issn1000-3304.2015.15158http://dx.doi.org/10.11777/j.issn1000-3304.2015.15158
李剑思, 王晶, 陈春海, 党国栋, 周建军, 李林. 锂离子电池有机/聚丙烯复合隔膜研究. 高分子学报, 2015, (11), 1294-1298. doi:10.11777/j.issn1000-3304.2015.15159http://dx.doi.org/10.11777/j.issn1000-3304.2015.15159
Yan J.; Liu F. Q.; Gao J.; Zhou W. D.; Huo H.; Zhou J. J.; Li L. Low-cost regulating lithium deposition behaviors by transition metal oxide coating on separator. Adv. Funct. Mater., 2021, 31(16), 2007255. doi:10.1002/adfm.202007255http://dx.doi.org/10.1002/adfm.202007255
Hu Z. Y.; Liu F. Q.; Gao J.; Zhou W. D.; Huo H.; Zhou J. J.; Li L. Dendrite-free lithium plating induced by in situ transferring protection layer from separator. Adv. Funct. Mater., 2020, 30(5), 1907020. doi:10.1002/adfm.201907020http://dx.doi.org/10.1002/adfm.201907020
Ma Y. T.; Qu W. J.; Hu X.; Qian J.; Li Y.; Li L.; Lu H.; Du H. L.; Wu F.; Chen R. J. Induction/inhibition effect on lithium dendrite growth by a binary modification layer on a separator. ACS Appl. Mater. Interfaces, 2022, 14(39), 44338-44344. doi:10.1021/acsami.2c11380http://dx.doi.org/10.1021/acsami.2c11380
0
Views
46
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution