浏览全部资源
扫码关注微信
超分子结构与材料国家重点实验室 吉林大学化学学院 长春 130012
Jun-qi Sun, E-mail: sun_junqi@jlu.edu.cn
Published:20 May 2023,
Published Online:13 February 2023,
Received:06 December 2022,
Accepted:05 January 2023
扫 描 看 全 文
李思衡,李懿轩,王钰婷等.可修复纤维损伤的防霜和防雾聚合物复合膜[J].高分子学报,2023,54(05):697-707.
Li Si-heng,Li Yi-xuan,Wang Yu-ting,et al.Frost-resistant and Antifogging Polymeric Composite Films Capable of Healing Fractured Nanofibers[J].ACTA POLYMERICA SINICA,2023,54(05):697-707.
李思衡,李懿轩,王钰婷等.可修复纤维损伤的防霜和防雾聚合物复合膜[J].高分子学报,2023,54(05):697-707. DOI: 10.11777/j.issn1000-3304.2022.22424.
Li Si-heng,Li Yi-xuan,Wang Yu-ting,et al.Frost-resistant and Antifogging Polymeric Composite Films Capable of Healing Fractured Nanofibers[J].ACTA POLYMERICA SINICA,2023,54(05):697-707. DOI: 10.11777/j.issn1000-3304.2022.22424.
聚合物材料内部具有的微/纳米尺度的结构赋予了它们独特的功能. 然而,聚合物材料在使用时不可避免地会遭受机械损伤,这会使得聚合物材料的微/纳米结构受到破坏,导致聚合物材料自身功能的丧失. 为了解决上述问题,我们利用聚丙烯酸(PAA)与聚丙烯酰胺(PAAm)的嵌段共聚物(PAA-
b
-PAAm)和聚二烯丙基二甲基氯化铵(PDDA)形成的复合物溶液,通过提拉成膜,然后在25 ℃、相对湿度为~100%的环境中退火处理,制备了可修复纳米纤维损伤的防霜和防雾聚合物复合膜(PAA-
b
-PAAm/PDDA). 亲水的PAA-
b
-PAAm/PDDA膜的纳米纤维结构可以增加水滴和膜表面的接触面积并促进膜对水分子的快速吸收,从而赋予了该膜优异的防雾防霜性能. 得益于聚合物链间静电与氢键作用的动态性,PAA-
b
-PAAm/PDDA膜具有优异的自修复性能,不仅能修复宽度为几十微米的划痕,还能使断裂的纤维重新连接并恢复其原有的纳米纤维结构.
Micro- and/or nanoscaled structures have endowed artificial polymeric materials with various unique functions. However
these materials are vulnerable to mechanical damage
which can destroy their inherent micro- and/or nanoscaled structures and result in the loss of their original functions. Therefore
to extend the service life of artificial polymeric materials whose functions depend on micro/nanostructures
it is highly important to fabricate polymeric materials that can heal damaged micro/nanoscaled structures. In this work
we report the fabrication of self-healing antifogging and frost-resisting films capable of healing the fractured nanofibrils. The films are fabricated by dip-coating of clean substrate from aqueous solution of poly(acrylic acid)-block-poly(acrylamide) (PAA-
b
-PAAm) and poly(diallyldimethylammonium chloride) (PDDA) complexes
followed by annealing under a humid environment of ~25 ℃ and relative humidity of ~100% (denoted as PAA-
b
-PAAm/PDDA). The complexation of PAA-
b
-PAAm and PDDA in aqueous solutions can assemble into nanorods
which are comprised of electrostatically cross-linked PAA blocks and PDDA chains as the hydrophobic cores and hydrogen-bonded PAAm chains as the hydrophilic coronas. These nanorods in the complex solutions can fuse into oriented nanofibers in the dip-coated PAA-
b
-PAAm/PDDA films during the dip-coating and the annealing processes. Nanofibrillar structures of the hydrophilic PAA-
b
-PAAm/PDDA film can increase the contact area between water droplets and film surfaces to facilitate water dispersion and adsorption
thereby endowing the film with excellent antifogging and frost-resisting properties. Because of the dynamic nature of electrostatic and hydrogen-bonding interactions
the PAA-
b
-PAAm/PDDA films can not only heal physical cuts with several tens of micrometer width
but also reconnect the fractured nanofibers to restore their original ordered nanostructures. The ability to heal macroscopic damages and restore inherent nanostructures can largely extend the service life and enhance the reliability of the antifogging and frost-resisting PAA-
b
-PAAm/PDDA films. The present work paves a way for the fabrication of polymeric materials that can heal micro/nanostructures and thus restore their original functions.
自修复材料防雾膜嵌段共聚物超分子材料
Self-healing materialsAntifogging filmsBlock copolymersSupramolecular materials
Bae W. G.; Kim H. N.; Kim D.; Park S. H.; Jeong H. E.; Suh K. Y. Scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv. Mater., 2014, 26(5), 675-700. doi:10.1002/adma.201303412http://dx.doi.org/10.1002/adma.201303412
Gao X. F.; Jiang L. Water-repellent legs of water striders. Nature, 2004, 432(7013), 36. doi:10.1038/432036ahttp://dx.doi.org/10.1038/432036a
Jin H. J.; Kaplan D. L. Mechanism of silk processing in insects and spiders. Nature, 2003, 424(6952), 1057-1061. doi:10.1038/nature01809http://dx.doi.org/10.1038/nature01809
Ensikat H. J.; Ditsche-Kuru P.; Neinhuis C.; Barthlott W. Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J. Nanotechnol., 2011, 2, 152-161. doi:10.3762/bjnano.2.19http://dx.doi.org/10.3762/bjnano.2.19
Autumn K.; Liang Y. A.; Hsieh S. T.; Zesch W.; Chan W. P.; Kenny T. W.; Fearing R.; Full R. J. Adhesive force of a single gecko foot-hair. Nature, 2000, 405(6787), 681-685. doi:10.1038/35015073http://dx.doi.org/10.1038/35015073
Mei H.; Luo D.; Guo P.; Song C.; Liu C. C.; Zheng Y. M.; Jiang L. Multi-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellency. Soft Matter, 2011, 7(22), 10569-10573. doi:10.1039/c1sm06347bhttp://dx.doi.org/10.1039/c1sm06347b
Gao X.; Yan X.; Yao X.; Xu L.; Zhang K.; Zhang J.; Yang B.; Jiang L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv. Mater., 2007, 19(17), 2213-2217. doi:10.1002/adma.200601946http://dx.doi.org/10.1002/adma.200601946
Hu S. H.; Xia Z. H.; Dai L. M. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes. Nanoscale, 2013, 5(2), 475-486. doi:10.1039/c2nr33027jhttp://dx.doi.org/10.1039/c2nr33027j
Lee H.; Lee B. P.; Messersmith P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature, 2007, 448(7151), 338-341. doi:10.1038/nature05968http://dx.doi.org/10.1038/nature05968
朱煜, 王晓工. 偶氮液晶嵌段共聚物自组装和光响应性研究进展. 高分子学报, 2013, (8), 962-970.
Miyake G. M.; Piunova V. A.; Weitekamp R. A.; Grubbs R. H. Precisely tunable photonic crystals from rapidly self-assembling brush block copolymer blends. Angew. Chem. Int. Ed. Engl., 2012, 51(45), 11246-11248. doi:10.1002/anie.201205743http://dx.doi.org/10.1002/anie.201205743
Li Y.; Li L.; Sun J. Q. Bioinspired self-healing superhydrophobic coatings. Angew. Chem. Int. Ed. Engl., 2010, 49(35), 6129-6133. doi:10.1002/anie.201001258http://dx.doi.org/10.1002/anie.201001258
Warkiani M. E.; Bhagat A. A. S.; Khoo B. L.; Han J.; Lim C. T.; Gong H. Q.; Fane A. G.Isoporous micro/nanoengineered membranes. ACS Nano, 2013, 7(3), 1882-1904. doi:10.1021/nn305616khttp://dx.doi.org/10.1021/nn305616k
Tao Y. F.; Ma B. W.; Segalman R. A. Self-assembly of rod-coil block copolymers and their application in electroluminescent devices. Macromolecules, 2008, 41(19), 7152-7159. doi:10.1021/ma800577ghttp://dx.doi.org/10.1021/ma800577g
Neinhuis C.; Koch K.; Barthlott W. Movement and regeneration of epicuticular waxes through plant cuticles. Planta, 2001, 213(3), 427-434. doi:10.1007/s004250100530http://dx.doi.org/10.1007/s004250100530
田丽蓉, 杨莉, 王占华, 夏和生. 含双重动态键的可重加工及室温自修复聚氨酯弹性体. 高分子学报, 2019, 50(5), 527-534. doi:10.11777/j.issn1000-3304.2019.19021http://dx.doi.org/10.11777/j.issn1000-3304.2019.19021
Wang Z. K.; Pan Q. M. An omni-healable supercapacitor integrated in dynamically cross-linked polymer networks. Adv. Funct. Mater., 2017, 27(24), 1700690. doi:10.1002/adfm.201700690http://dx.doi.org/10.1002/adfm.201700690
Wang Y.; Li T. Q.; Li S. H.; Sun J. Q. Antifogging and frost-resisting polyelectrolyte coatings capable of healing scratches and restoring transparency. Chem. Mater., 2015, 27(23), 8058-8065. doi:10.1021/acs.chemmater.5b03705http://dx.doi.org/10.1021/acs.chemmater.5b03705
Li Y. X.; Liang L.; Liu C. P.; Li Y.; Xing W.; Sun J. Q. Self-healing proton-exchange membranes composed of nafion-poly(vinyl alcohol) complexes for durable direct methanol fuel cells. Adv. Mater., 2018, 30(25), e1707146. doi:10.1002/adma.201707146http://dx.doi.org/10.1002/adma.201707146
王晓晗, 李洋, 孙俊奇. 基于聚乙烯醇的高强度可修复超分子形状记忆塑料. 高分子学报, 2021, 52(8), 1043-1052. doi:10.11777/j.issn1000-3304.2021.21133http://dx.doi.org/10.11777/j.issn1000-3304.2021.21133
Pan H. B.; Zhang W.; Xiao A. Q.; Lyu X. L.; Shen Z. H.; Fan X. H. Persistent formation of self-assembled cylindrical structure in a liquid crystalline block copolymer constructed by hydrogen bonding. Macromolecules, 2018, 51(15), 5676-5684. doi:10.1021/acs.macromol.8b00806http://dx.doi.org/10.1021/acs.macromol.8b00806
Geng Z.; Cheng Z. K.; Zhu Y. T.; Jiang W. Controllable cooperative self-assembly of PS-b-PAA/PS-b-P4VP mixture by tuning the intercorona interaction. J. Phys. Chem. B, 2016, 120(24), 5527-5533. doi:10.1021/acs.jpcb.6b00273http://dx.doi.org/10.1021/acs.jpcb.6b00273
Zhang L. Y.; Cui T. T.; Cao X.; Zhao C. J.; Chen Q.; Wu L. X.; Li H. L. Inorganic-macroion-induced formation of bicontinuous block copolymer nanocomposites with enhanced conductivity and modulus. Angew. Chem. Int. Ed. Engl., 2017, 56(31), 9013-9017. doi:10.1002/anie.201702785http://dx.doi.org/10.1002/anie.201702785
Kim H. C.; Park S. M.; Hinsberg W. D.Block copolymer based nanostructures: materials, processes, and applications to electronics. Chem. Rev., 2010, 110(1), 146-177. doi:10.1021/cr900159vhttp://dx.doi.org/10.1021/cr900159v
Lim H. S.; Lee J. H.; Walish J. J.; Thomas E. L. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. ACS Nano, 2012, 6(10), 8933-8939. doi:10.1021/nn302949nhttp://dx.doi.org/10.1021/nn302949n
Schacher F. H.; Rupar P. A.; Manners I. Functional block copolymers: nanostructured materials with emerging applications. Angew. Chem. Int. Ed Engl., 2012, 51(32), 7898-7921. doi:10.1002/anie.201200310http://dx.doi.org/10.1002/anie.201200310
李懿轩, 孙俊奇. 基于聚合物复合物的自修复与可修复聚合物材料. 高分子学报, 2020, 51(8), 791-803. doi:10.11777/j.issn1000-3304.2020.20062http://dx.doi.org/10.11777/j.issn1000-3304.2020.20062
An N.; Wang X. H.; Li Y. X.; Zhang L.; Lu Z. Y.; Sun J. Q. Healable and mechanically super-strong polymeric composites derived from hydrogen-bonded polymeric complexes. Adv. Mater., 2019, 31(41), e1904882. doi:10.1002/adma.201904882http://dx.doi.org/10.1002/adma.201904882
Taton D.; Wilczewska A. Z.; Destarac M. Direct synthesis of double hydrophilic statistical di- and triblock copolymers comprised of acrylamide and acrylic acid units via the MADIX process. Macromol. Rapid Commun., 2001, 22(18), 1497. doi:10.1002/1521-3927(20011201)22:18<1497::aid-marc1497>3.0.co;2-mhttp://dx.doi.org/10.1002/1521-3927(20011201)22:18<1497::aid-marc1497>3.0.co;2-m
Clark S. L.; Hammond P. T. The role of secondary interactions in selective electrostatic multilayer deposition. Langmuir, 2000, 16(26), 10206-10214. doi:10.1021/la000418ahttp://dx.doi.org/10.1021/la000418a
Syed J. A.; Tang S. C.; Lu H. B.; Meng X. K. Smart PDDA/PAA multilayer coatings with enhanced stimuli responsive self-healing and anti-corrosion ability. Colloids Surf. A Physicochem. Eng. Aspects, 2015, 476, 48-56. doi:10.1016/j.colsurfa.2015.03.021http://dx.doi.org/10.1016/j.colsurfa.2015.03.021
Sanson N.; Bouyer F.; Destarac M.; In M.; Gérardin C. Hybrid polyion complex micelles formed from double hydrophilic block copolymers and multivalent metal ions: size control and nanostructure. Langmuir, 2012, 28(8), 3773-3782. doi:10.1021/la204562thttp://dx.doi.org/10.1021/la204562t
Voets I. K.; van der Burgh S.; Farago B.; Fokkink R.; Kovacevic D.; Hellweg T.; de Keizer A.; Cohen Stuart M. A. Electrostatically driven coassembly of a diblock copolymer and an oppositely charged homopolymer in aqueous solutions. Macromolecules, 2007, 40(23), 8476-8482. doi:10.1021/ma071356zhttp://dx.doi.org/10.1021/ma071356z
Burke S. E.; Eisenberg A. Kinetics and mechanisms of the sphere-to-rod and rod-to-sphere transitions in the ternary system PS310-b-PAA52/dioxane/water. Langmuir, 2001, 17(21), 6705-6714. doi:10.1021/la010640vhttp://dx.doi.org/10.1021/la010640v
Burke S.; Eisenberg A. Physico-chemical investigation of multiple asymmetric amphiphilic diblock copolymer morphologies in solution. High Perform. Polym., 2000, 12(4), 535-542. doi:10.1088/0954-0083/12/4/308http://dx.doi.org/10.1088/0954-0083/12/4/308
Peng J.; Han Y. C.; Knoll W.; Kim D. H. Development of nanodomain and fractal morphologies in solvent annealed block copolymer thin films. Macromol. Rapid Commun., 2007, 28(13), 1422-1428. doi:10.1002/marc.200700206http://dx.doi.org/10.1002/marc.200700206
Jin C.; Murphy J. N.; Harris K. D.; Buriak J. M. Deconvoluting the mechanism of microwave annealing of block copolymer thin films. ACS Nano, 2014, 8(4), 3979-3991. doi:10.1021/nn5009098http://dx.doi.org/10.1021/nn5009098
He W. N.; Zhou B.; Xu J. T.; Du B. Y.; Fan Z. Q. Two growth modes of semicrystalline cylindrical poly(ε-caprolactone)-b-poly(ethylene oxide) micelles. Macromolecules, 2012, 45(24), 9768-9778. doi:10.1021/ma301267khttp://dx.doi.org/10.1021/ma301267k
Tu Y. F.; Ji Z. C.; Yang X. M.; Wan X. H.; Zhou Q. F. Supramolecular chemistry in the formation of self-assembled nanostructures from a high-molecular-weight rod-coil block copolymer. Macromol. Rapid Commun., 2014, 35(20), 1795-1800. doi:10.1002/marc.201400381http://dx.doi.org/10.1002/marc.201400381
He W. N.; Xu J. T.; Du B. Y.; Fan Z. Q.; Sun F. L. Effect of pH on the micellar morphology of semicrystalline PCL-b-PEO block copolymers in aqueous solution. Macromol. Chem. Phys., 2012, 213(9), 952-964. doi:10.1002/macp.201100615http://dx.doi.org/10.1002/macp.201100615
Romeo H. E.; Zucchi I. A.; Rico M.; Hoppe C. E.; Williams R. J. J. From spherical micelles to hexagonally packed cylinders: The cure cycle determines nanostructures generated in block copolymer/epoxy blends. Macromolecules, 2013, 46(12), 4854-4861. doi:10.1021/ma400778shttp://dx.doi.org/10.1021/ma400778s
Ogawa H.; Takenaka M.; Miyazaki T.; Fujiwara A.; Lee B.; Shimokita K.; Nishibori E.; Takata M. Direct observation on spin-coating process of PS-b-P2VP thin films. Macromolecules, 2016, 49(9), 3471-3477. doi:10.1021/acs.macromol.6b00049http://dx.doi.org/10.1021/acs.macromol.6b00049
Xu L. G.; He J. H. Antifogging and antireflection coatings fabricated by integrating solid and mesoporous silica nanoparticles without any post-treatments. ACS Appl. Mater. Interfaces, 2012, 4(6), 3293-3299. doi:10.1021/am300658ehttp://dx.doi.org/10.1021/am300658e
Han Z. W.; Feng X. M.; Guo Z. G.; Niu S. C.; Ren L. Q. Flourishing bioinspired antifogging materials with superwettability: progresses and challenges. Adv. Mater., 2018, 30(13), e1704652. doi:10.1002/adma.201704652http://dx.doi.org/10.1002/adma.201704652
0
Views
86
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution