浏览全部资源
扫码关注微信
武汉大学化学与分子科学学院 湖北省天然高分子基医用材料工程技术研究中心 武汉 430072
Jie Cai, E-mail: caijie@whu.edu.cn
Published:20 May 2023,
Published Online:17 February 2023,
Received:10 December 2022,
Accepted:31 January 2023
扫 描 看 全 文
张珂,张茜,方宇嘉等.基于Hofmeister效应制备高强韧壳聚糖气凝胶[J].高分子学报,2023,54(05):731-740.
Zhang Ke,Zhang Xi,Fang Yu-jia,et al.Strong and Tough Chitosan Aerogels via Hofmeister Effect[J].ACTA POLYMERICA SINICA,2023,54(05):731-740.
张珂,张茜,方宇嘉等.基于Hofmeister效应制备高强韧壳聚糖气凝胶[J].高分子学报,2023,54(05):731-740. DOI: 10.11777/j.issn1000-3304.2022.22427.
Zhang Ke,Zhang Xi,Fang Yu-jia,et al.Strong and Tough Chitosan Aerogels via Hofmeister Effect[J].ACTA POLYMERICA SINICA,2023,54(05):731-740. DOI: 10.11777/j.issn1000-3304.2022.22427.
气凝胶在绝热保温、催化、吸附分离等领域有着广泛的应用,通常需要对气凝胶的微观结构和力学性能进行调控以满足特定需求. 然而,开发绿色技术制备高强韧天然高分子气凝胶仍然面临巨大的挑战. 本文报道了在壳聚糖新溶剂中基于Hofmeister效应调控壳聚糖分子链的侧向聚集和重结晶,影响壳聚糖水凝胶和气凝胶的微观形貌、孔隙结构和力学性能等物理性质,构建出高强韧壳聚糖气凝胶. 通过改变盐的种类,可以有效调控壳聚糖水凝胶和气凝胶的力学性能,并显示出遵循Hofmeister序列的规律. 壳聚糖气凝胶的拉伸强度、杨氏模量和断裂功最高可达(23.1±0.4) MPa、(198.0±43.8) MPa和(9.6±0.9) MJ/m
3
,比表面积最高可达410 m
2
/g. 这种简单策略有助于制备高强韧壳聚糖气凝胶,在柔性电子器件、组织工程材料、药物/蛋白载体和催化等领域有潜在应用前景.
Aerogels have been extensively used in a variety of fields
such as thermal insulation
catalyst supports
adsorption and separation
and so on. Aerogels often need modification of their microstructure and mechanical properties to satisfy particular requirements. However
creating green technology to produce aerogels with high strength and toughness based on natural polymers remains a significant issue. In this work
we present a strategy for constructing chitosan aerogels with high strength and toughness by controlling the lateral aggregation and recrystallization of chitosan chains with salt ions
thereby influencing the morphology
pore structure
and mechanical properties of chitosan aerogels
via
the Hofmeister effect. The mechanical properties of chitosan hydrogels and aerogels may be efficiently manipulated by altering the anions and cations of salts
as shown by the Hofmeister effect. Chitosan aerogels have a maximum tensile strength of (23.1±0.4) MPa
Young's modulus of (198.0±43.8) MPa
and fracture work of (9.6±0.9) MJ/m
3
and a maximum specific surface area of 410 m
2
/g. This straightforward method simplifies the production of chitosan aerogels with high strength and toughness
which have potential uses in flexible electrical devices
tissue engineering materials
drug/protein carriers
and catalysts.
壳聚糖气凝胶Hofmeister效应聚集态结构力学性能
ChitosanAerogelsHofmeister effectAggregation state structureMechanical properties
Morris C. A.; Anderson M. L.; Stroud R. M.; Merzbacher C. I.; Rolison D. R. Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science, 1999, 284(5414), 622-624. doi:10.1126/science.284.5414.622http://dx.doi.org/10.1126/science.284.5414.622
Hüsing, N.; Schubert, U. Aerogels-airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed., 1998, 37(1-2), 22-45. doi:10.1002/1521-3773(19980202)37:1/2<22::aid-anie22>3.3.co;2-9http://dx.doi.org/10.1002/1521-3773(19980202)37:1/2<22::aid-anie22>3.3.co;2-9
Kistler S. S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211), 741. doi:10.1038/127741a0http://dx.doi.org/10.1038/127741a0
Zhao S. Y.; Siqueira G.; Drdova S.; Norris D.; Ubert C.; Bonnin A.; Galmarini S.; Ganobjak M.; Pan Z. Y.; Brunner S.; Nyström G.; Wang J.; Koebel M. M.; Malfait W. J. Additive manufacturing of silica aerogels. Nature, 2020, 584(7821), 387-392. doi:10.1038/s41586-020-2594-0http://dx.doi.org/10.1038/s41586-020-2594-0
Budtova T.; Lokki T.; Malakooti S.; Rege A.; Lu H. B.; Milow B.; Vapaavuori J.; Vivod S. L. Acoustic properties of aerogels: current status and prospects. Adv. Eng. Mater., 2022, 2201137. doi:10.1002/adem.202201137http://dx.doi.org/10.1002/adem.202201137
Wu Z. S.; Yang S. B.; Sun Y.; Parvez K.; Feng X. L.; Müllen K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc., 2012, 134(22), 9082-9085.
Worsley M. A.; Pauzauskie P. J.; Olson T. Y.; Biener J.; Satcher J. H. Jr, Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc., 2010, 132(40), 14067-14069. doi:10.1021/ja1072299http://dx.doi.org/10.1021/ja1072299
Ulker Z.; Erkey C. An emerging platform for drug delivery: aerogel based systems. J. Control. Release, 2014, 177, 51-63. doi:10.1016/j.jconrel.2013.12.033http://dx.doi.org/10.1016/j.jconrel.2013.12.033
Meena A. K.; Mishra G. K.; Rai P. K.; Rajagopal C.; Nagar P. N. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater., 2005, 122(1-2), 161-170. doi:10.1016/j.jhazmat.2005.03.024http://dx.doi.org/10.1016/j.jhazmat.2005.03.024
段博, 涂虎, 张俐娜. 可持续高分子-纤维素新材料研究进展. 高分子学报, 2020, 51(1), 66-86. doi:10.11777/j.issn1000-3304.2020.19160http://dx.doi.org/10.11777/j.issn1000-3304.2020.19160
Zhang W. H.; Xu C. L.; Che X. P.; Wang T.; Willför S.; Li M. J.; Li C. X. Encapsulating amidoximated nanofibrous aerogels within wood cell tracheids for efficient cascading adsorption of uranium ions. ACS Nano, 2022, 16(8), 13144-13151. doi:10.1021/acsnano.2c06173http://dx.doi.org/10.1021/acsnano.2c06173
Takeshita S.; Zhao S. Y.; Malfait W. J.; Koebel M. M. Chemistry of chitosan aerogels: three-dimensional pore control for tailored applications. Angew. Chem. Int. Ed., 2021, 60(18), 9828-9851. doi:10.1002/anie.202003053http://dx.doi.org/10.1002/anie.202003053
Wei S.; Ching Y. C.; Chuah C. H. Synthesis of chitosan aerogels as promising carriers for drug delivery. Carbohydr. Polym., 2020, 231, 115744. doi:10.1016/j.carbpol.2019.115744http://dx.doi.org/10.1016/j.carbpol.2019.115744
Guerrero-Alburquerque N.; Zhao S. Y.; Adilien N.; Koebel M. M.; Lattuada M.; Malfait W. J. Strong, machinable, and insulating chitosan-urea aerogels: toward ambient pressure drying of biopolymer aerogel monoliths. ACS Appl. Mater. Interfaces, 2020, 12(19), 22037-22049. doi:10.1021/acsami.0c03047http://dx.doi.org/10.1021/acsami.0c03047
Santos-López G.; Argüelles-Monal W.; Carvajal-Millan E.; López-Franco Y. L.; Recillas-Mota M. T.; Lizardi-Mendoza J. Aerogels from chitosan solutions in ionic liquids. Polymers, 2017, 9(12), 722. doi:10.3390/polym9120722http://dx.doi.org/10.3390/polym9120722
Musilová L.; Kašpárková V.; Mráček A.; Minařík A.; Minařík M. The behaviour of hyaluronan solutions in the presence of Hofmeister ions: a light scattering, viscometry and surface tension study. Carbohydr. Polym., 2019, 212, 395-402. doi:10.1016/j.carbpol.2019.02.032http://dx.doi.org/10.1016/j.carbpol.2019.02.032
Endo A.; Kurinomaru T.; Shiraki K. Hyperactivation of serine proteases by the Hofmeister effect. Mol. Catal., 2018, 455, 32-37. doi:10.1016/j.mcat.2018.05.023http://dx.doi.org/10.1016/j.mcat.2018.05.023
Du R.; Hu Y.; Hübner R.; Joswig J. O.; Fan X. L.; Schneider K.; Eychmüller A. Specific ion effects directed noble metal aerogels: versatile manipulation for electrocatalysis and beyond. Sci. Adv., 2019, 5(5), eaaw4590.
Price C.; Carroll J.; Clare T. L. Chemoresistive and photonic hydrogel sensors of transition metal ions via Hofmeister series principles. Sens. Actuat. B Chem., 2018, 256, 870-877. doi:10.1016/j.snb.2017.10.031http://dx.doi.org/10.1016/j.snb.2017.10.031
Yan G. H.; He S. M.; Chen G. F.; Ma S.; Zeng A. Q.; Chen B. L.; Yang S. L.; Tang X.; Sun Y.; Xu F.; Lin L.; Zeng X. H. Highly flexible and broad-range mechanically tunable all-wood hydrogels with nanoscale channels via the hofmeister effect for human motion monitoring. Nanomicro Lett., 2022, 14(1), 84. doi:10.1007/s40820-022-00827-3http://dx.doi.org/10.1007/s40820-022-00827-3
Zhao B. N.; Zhang Y. Z.; Li D. D.; Mo X. M.; Pan J. F. Hofmeister effect-enhanced gelatin/oxidized dextran hydrogels with improved mechanical properties and biocompatibility for wound healing. Acta Biomater., 2022, 151, 235-253. doi:10.1016/j.actbio.2022.08.009http://dx.doi.org/10.1016/j.actbio.2022.08.009
He Q. Y.; Huang Y.; Wang S. Y. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater., 2018, 28(5), 1705069. doi:10.1002/adfm.201705069http://dx.doi.org/10.1002/adfm.201705069
Wu S. W.; Hua M. T.; Alsaid Y.; Du Y. J.; Ma Y. F.; Zhao Y. S.; Lo C. Y.; Wang C. R.; Wu D.; Yao B. W.; Strzalka J.; Zhou H.; Zhu X. Y.; He X. M. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the Hofmeister effect. Adv. Mater., 2021, 33(11), e2007829. doi:10.1002/adma.202007829http://dx.doi.org/10.1002/adma.202007829
Jaspers M.; Rowan A. E.; Kouwer P. H. J. Tuning hydrogel mechanics using the Hofmeister effect. Adv. Funct. Mater., 2015, 25(41), 6503-6510. doi:10.1002/adfm.201502241http://dx.doi.org/10.1002/adfm.201502241
Cai J.; Kimura S.; Wada M.; Kuga S.; Zhang L. N. Cellulose aerogels from aqueous alkali hydroxide-urea solution. ChemSusChem, 2008, 1(1-2), 149-154. doi:10.1002/cssc.200700039http://dx.doi.org/10.1002/cssc.200700039
Ding B. B.; Cai J.; Huang J. C.; Zhang L. N.; Chen Y.; Shi X. W.; Du Y. M.; Kuga S. Facile preparation of robust and biocompatible chitin aerogels. J. Mater. Chem., 2012, 22(12), 5801-5809. doi:10.1039/c2jm16032chttp://dx.doi.org/10.1039/c2jm16032c
Ding B. B.; Zhao D.; Song J. H.; Gao H. C.; Xu D. D.; Xu M.; Cao X. D.; Zhang L. N.; Cai J. Light weight, mechanically strong and biocompatible α-chitin aerogels from different aqueous alkali hydroxide/urea solutions. Sci. China Chem., 2016, 59(11), 1405-1414. doi:10.1007/s11426-016-0205-5http://dx.doi.org/10.1007/s11426-016-0205-5
Cai J.; Kimura S.; Wada M.; Kuga S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules, 2009, 10(1), 87-94. doi:10.1021/bm800919ehttp://dx.doi.org/10.1021/bm800919e
Cai J.; Liu S. L.; Feng J.; Kimura S.; Wada M.; Kuga S.; Zhang L. N. Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem. Int. Ed., 2012, 51(9), 2076-2079. doi:10.1002/anie.201105730http://dx.doi.org/10.1002/anie.201105730
Shi Z. Q.; Gao H. C.; Feng J.; Ding B. B.; Cao X. D.; Kuga S.; Wang Y. J.; Zhang L. N.; Cai J. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew. Chem. Int. Ed., 2014, 53(21), 5380-5384. doi:10.1002/anie.201402751http://dx.doi.org/10.1002/anie.201402751
Huang J. C.; Zhong Y.; Zhang L. N.; Cai J. Distinctive viewpoint on the rapid dissolution mechanism of α-chitin in aqueous potassium hydroxide-urea solution at low temperatures. Macromolecules, 2020, 53(13), 5588-5598. doi:10.1021/acs.macromol.0c00945http://dx.doi.org/10.1021/acs.macromol.0c00945
Chen Y. J.; Zhang Q.; Zhong Y.; Wei P. D.; Yu X. J.; Huang J. C.; Cai J. Super-strong and super-stiff chitosan filaments with highly ordered hierarchical structure. Adv. Funct. Mater., 2021, 31(38), 2104368. doi:10.1002/adfm.202104368http://dx.doi.org/10.1002/adfm.202104368
Zhang Q.; Chen Y. J.; Wei P. D.; Zhong Y.; Chen C. J.; Cai J. Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Mater. Today, 2021, 51, 27-38. doi:10.1016/j.mattod.2021.10.030http://dx.doi.org/10.1016/j.mattod.2021.10.030
蔡杰, 钟奕, 黄俊超, 张俐娜. 一种连续制备不同脱乙酰度的甲壳素/壳聚糖溶液的方法. 中国专利, ZL 201711023349.7. 2022-03-15.
Takeshita S.; Sadeghpour A.; Malfait W. J.; Konishi A.; Otake K.; Yoda S. Formation of nanofibrous structure in biopolymer aerogel during supercritical CO2 processing: the case of chitosan aerogel. Biomacromolecules, 2019, 20(5), 2051-2057. doi:10.1021/acs.biomac.9b00246http://dx.doi.org/10.1021/acs.biomac.9b00246
Marcus Y. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem., 1994, 51(2-3), 111-127. doi:10.1016/0301-4622(94)00051-4http://dx.doi.org/10.1016/0301-4622(94)00051-4
Cho Y.; Zhang Y. J.; Christensen T.; Sagle L. B.; Chilkoti A.; Cremer P. S. Effects of Hofmeister anions on the phase transition temperature of elastin-like polypeptides. J. Phys. Chem. B, 2008, 112(44), 13765-13771. doi:10.1021/jp8062977http://dx.doi.org/10.1021/jp8062977
Ogawa, K.; Yui, T.; Okuyama, K. 3D structures of chitosan. Int. J. Biol. Macromol., 2004, 34(1-2), 1-8. doi:10.1016/j.ijbiomac.2003.11.002http://dx.doi.org/10.1016/j.ijbiomac.2003.11.002
Naito P. K.; Ogawa Y.; Kimura S.; Iwata T.; Wada M. Crystal transition from hydrated chitosan and chitosan/monocarboxylic acid complex to anhydrous chitosan investigated by X-ray diffraction. J. Polym. Sci. B Polym. Phys., 2015, 53(15), 1065-1069. doi:10.1002/polb.23748http://dx.doi.org/10.1002/polb.23748
Sui R. H.; Charpentier P. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chem. Rev., 2012, 112(6), 3057-3082. doi:10.1021/cr2000465http://dx.doi.org/10.1021/cr2000465
0
Views
88
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution