浏览全部资源
扫码关注微信
1.北京分子科学国家研究中心 北京大学化学与分子工程学院 高分子化学与物理教育部重点实验室 北京 100871
2.郑州大学材料科学与工程学院 河南省活性聚合与功能纳米材料国际联合实验室 河南省先进尼龙材料及应用重点实验室 郑州 450001
Xin-hua Wan, E-mail: xhwan@pku.edu.cn
Published:20 May 2023,
Published Online:24 February 2023,
Received:13 December 2022,
Accepted:16 January 2023
扫 描 看 全 文
李悦,史歌,康舒铭等.取代基结构对螺旋聚乙炔高效液相色谱手性固定相对映选择性分离性能的影响[J].高分子学报,2023,54(05):612-621.
Li Yue,Shi Ge,Kang Shu-ming,et al.Effect of Substituent on the Enantioseparation Property of Helical Polyacetylene-based Chiral Stationary Phases for High-performance Liquid Chromatography[J].ACTA POLYMERICA SINICA,2023,54(05):612-621.
李悦,史歌,康舒铭等.取代基结构对螺旋聚乙炔高效液相色谱手性固定相对映选择性分离性能的影响[J].高分子学报,2023,54(05):612-621. DOI: 10.11777/j.issn1000-3304.2022.22429.
Li Yue,Shi Ge,Kang Shu-ming,et al.Effect of Substituent on the Enantioseparation Property of Helical Polyacetylene-based Chiral Stationary Phases for High-performance Liquid Chromatography[J].ACTA POLYMERICA SINICA,2023,54(05):612-621. DOI: 10.11777/j.issn1000-3304.2022.22429.
基于(
S
)-2-乙炔基吡咯烷、炔丙胺和炔丙醇合成了5种乙炔基单体——(
S
)-
N
-对氯苯基氨基甲酰基-2-乙炔基吡咯烷(I)、(
S
)-
N
-对氯苯甲酰基-2-乙炔基吡咯烷(II)、
N
-对氯苯基-
N
'-炔丙基脲(III)、
N
-炔丙基氨基甲酸对氯苯酯(IV)和
N
-对氯苯基氨基甲酸炔丙酯(V);通过Rh(nbd)BPh
4
催化的配位共聚合反应制备了单体I分别与单体II~V构成的光学活性螺旋共聚物——I
50
-
ran
-II
50
、I
80
-
ran
-II
20
、I
95
-
ran
-III
5
、I
95
-
ran
-IV
5
和I
95
-
ran
-V
5
. 研究了共聚物的结构和组成对旋光性质的影响,并用高效液相色谱评估了其作为涂敷型手性固定相对9种标准底物的对映选择性分离性能. 研究结果表明,I
80
-
ran
-II
20
的光学活性最佳,表现出优于其他共聚物的手性识别性能,对安息香(
α
=1.40)与乙酰丙酮钴(
α
=1.88)展现出良好的分离能力. 手性单体II的引入对共聚物主链螺旋手性的影响较小,但明显干扰侧基的不对称有序排列,降低对映选择性分离性能;不论连接基团的结构和方向,非手性炔丙基单体的引入都显著降低共聚物的光学活性和对映选择性分离性能.
Based on (
S
)-ethynylpyrrolidine
propargylamine and propargyl alcohol
five monosubstituted ethynyl monomers
including (
S
)
-N-
[(4-chlorophenyl)carbamoyl]-2-ethynyl pyrrolidine (Ⅰ)
(
S
)
-N-
(4-chlor robenzoyl)-2-ethynyl pyrrolidine (Ⅱ)
1-(
p
-chlorophenyl)-3-(2-propynyl)urea (Ⅲ)
p
-chlorophenyl
N
-propargylcarbamate (Ⅳ) and propargyl
N
-(4'-chlorophenyl)carbamate (Ⅴ) were synthesized. Optically active helical copolymers
I
50
-
ran
-II
50
I
80
-
ran
-II
20
I
95
-
ran
-III
5
I
95
-
ran
-IV
5
and I
95
-
ran
-V
5
were prepared through coordination polymerization catalyzed by Rh(nbd)BPh
4
of I with II to V
respectively. The effect of the structure and composition of the copolymers on the optical activity were studied
and the enantioseparation performance of the copolymers as coated chiral stationary phase toward 9 standard racemates were evaluated by high performance liquid chromatography. I
80
-
ran
-II
20
has the highest optical activity
showing better chiral recognition performance than other copolymers
and exhibited well chiral resolution ability for benzoin (
α
=1.40) and cobalt acetylacetonate (
α
=1.88). The introduction of chiral monomer II has little effect on the helicity of the copolymer backbone
but obviously interferes with the asymmetric arrangement of side groups and reduces the enantioseparation performance. The introduction of achiral propargyl monomers significantly reduces the optical activity and enantioseparation of copolymers regardless of the bond orientation.
螺旋聚乙炔手性固定相取代基结构高效液相色谱对映选择性分离
Helical polyacetyleneChiral stationary phaseSubstituent structureHigh performance liquid chromatographyEnantioseparation
Ali I.; Aboul-Enein H. Y. Chiral Pollutants: Distribution, Toxicity and Analysis by Chromatography and Capillary Electrophoresis. Chichester: Wiley, 2004. doi:10.1002/0470867825http://dx.doi.org/10.1002/0470867825
Ye X. C.; Cui J. X.; Li B. W.; Li N.; Wang R.; Yan Z. J.; Tan J. Y.; Zhang J.; Wan X. H. Enantiomer-selective magnetization of conglomerates for quantitative chiral separation. Nat. Commun., 2019, 10(1), 1964. doi:10.1038/s41467-019-09997-yhttp://dx.doi.org/10.1038/s41467-019-09997-y
Ye X. C.; Cui J. X.; Li B. W.; Li N.; Zhang J.; Wan X. H. Self-reporting inhibitors: a single crystallization process to obtain two optically pure enantiomers. Angew. Chem. Int. Ed., 2018, 57(27), 8120-8124. doi:10.1002/anie.201803480http://dx.doi.org/10.1002/anie.201803480
Ye X. C.; Li B. W.; Wang Z. X.; Li J.; Zhang J.; Wan X. H. Tuning organic crystal chirality by the molar masses of tailored polymeric additives. Nat. Commun., 2021, 12(1), 6841. doi:10.1038/s41467-021-27236-1http://dx.doi.org/10.1038/s41467-021-27236-1
Ye X. C.; Wang Z. X.; Zhang J.; Wan X. H. Noncovalently functionalized commodity polymers as tailor-made additives for stereoselective crystallization. Angew. Chem. Int. Ed., 2021, 60(37), 20243-20248. doi:10.1002/anie.202106603http://dx.doi.org/10.1002/anie.202106603
Li B. W.; Li N.; Wang Z. X.; Ye X. C.; Zhang J.; Wan X. H. High-performance nano-splitters containing aggregation-induced emission luminogens for stereoselective crystallization obtained via polymerization-induced self-assembly. Aggregate, 2021, 2(6), 1-7. doi:10.1002/agt2.129http://dx.doi.org/10.1002/agt2.129
Shen J.; Okamoto Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem. Rev., 2016, 116(3), 1094-1138. doi:10.1021/acs.chemrev.5b00317http://dx.doi.org/10.1021/acs.chemrev.5b00317
Shimomura K.; Ikai T.; Kanoh S.; Yashima E.; Maeda K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat. Chem., 2014, 6(5), 429-434. doi:10.1038/nchem.1916http://dx.doi.org/10.1038/nchem.1916
Hirose D.; Isobe A.; Quiñoá E.; Freire F.; Maeda K. Three-state switchable chiral stationary phase based on helicity control of an optically active poly(phenylacetylene) derivative by using metal cations in the solid state. J. Am. Chem. Soc., 2019, 141(21), 8592-8598. doi:10.1021/jacs.9b03177http://dx.doi.org/10.1021/jacs.9b03177
Maeda K.; Maruta M.; Sakai Y.; Ikai T.; Kanoh S. Synthesis of optically active poly(diphenylacetylene)s using polymer reactions and an evaluation of their chiral recognition abilities as chiral stationary phases for HPLC. Molecules, 2016, 21(11), 1487. doi:10.3390/molecules21111487http://dx.doi.org/10.3390/molecules21111487
Miyabe T.; Iida H.; Ohnishi A.; Yashima E. Enantioseparation on poly(phenyl isocyanide)s with macromolecular helicity memory as chiral stationary phases for HPLC. Chem. Sci., 2012, 3(3), 863-867. doi:10.1039/c1sc00708dhttp://dx.doi.org/10.1039/c1sc00708d
Navarro-Sánchez J.; Argente-García A. I.; Moliner-Martínez Y.; Roca-Sanjuán D.; Antypov D.; Campíns-Falcó P.; Rosseinsky M. J.; Martí-Gastaldo C. Peptide metal-organic frameworks for enantioselective separation of chiral drugs. J. Am. Chem. Soc., 2017, 139(12), 4294-4297. doi:10.1021/jacs.7b00280http://dx.doi.org/10.1021/jacs.7b00280
Jiang H.; Yang K. W.; Zhao X. X.; Zhang W. Q.; Liu Y.; Jiang J. W.; Cui Y. Highly stable Zr(IV)-based metal-organic frameworks for chiral separation in reversed-phase liquid chromatography. J. Am. Chem. Soc., 2021, 143(1), 390-398. doi:10.1021/jacs.0c11276http://dx.doi.org/10.1021/jacs.0c11276
Okamoto Y.; Suzuki K.; Ohta K.; Hatada K.; Yuki H. Optically active poly(triphenylmethyl methacrylate) with one-handed helical conformation. J. Am. Chem. Soc., 1979, 101(16), 4763-4765. doi:10.1021/ja00510a072http://dx.doi.org/10.1021/ja00510a072
Okamoto Y.; Hatada K. Resolution of enantiomers by HPLC on optically active poly(triphenylmethyl methacrylate). J. Liq. Chromatogr., 1986, 9(2-3), 369-384. doi:10.1080/01483918608076642http://dx.doi.org/10.1080/01483918608076642
虞斌, 丁孟贤, 周子南, 吴盛容, 王佛松. 旋光性聚酰胺的合成、表征及其手性识别能力. 功能高分子学报, 1993, 6(3), 193-198.
杨璨瑜, 王一帆, 孙维维, 杨江蓉, 路振宇, 袁黎明. 聚L-谷氨酸乙酯手性固定相的制备及色谱评价. 分析测试学报, 2014, 33(10), 1142-1147. doi:10.3969/j.issn.1004-4957.2014.10.008http://dx.doi.org/10.3969/j.issn.1004-4957.2014.10.008
杨蕊, 孔娇, 杨璨瑜, 杨江蓉, 袁黎明, 字敏. 聚L-谷氨酸苄酯固定相的制备及色谱评价. 分析试验室, 2014, 33(11), 1260-1264. doi:10.13595/j.cnki.issn1000-0720.2014.0295http://dx.doi.org/10.13595/j.cnki.issn1000-0720.2014.0295
Wang S.; Tan J. Y.; Guan X. Y.; Chen J. X.; Zhang J.; Wan X. H. Hydrogen bonds driven conformation autoregulation and sol-gel transition of poly(3,5-disubstituted phenylacetylene)s. Eur. Polym. J., 2019, 118, 312-319. doi:10.1016/j.eurpolymj.2019.05.060http://dx.doi.org/10.1016/j.eurpolymj.2019.05.060
Wang S.; Feng X. Y.; Zhang J.; Wan X. H. Doublet chirality transfer and reversible helical transition in poly(3,5-disubstituted phenylacetylene)s with pyrene as a probe unit. Chin. J. Chem., 2020, 38(6), 570-576. doi:10.1002/cjoc.202000020http://dx.doi.org/10.1002/cjoc.202000020
Wang S.; Cai S. L.; Zhang J.; Wan X. H. Tunable Cis-cisoid helical conformation of poly(3,5-disubstibuted phenylacetylene)s stabilized by n→π* interaction. Chinese J. Polym. Sci., 2020, 38(7), 685-695. doi:10.1007/s10118-020-2376-zhttp://dx.doi.org/10.1007/s10118-020-2376-z
Guan X. Y.; Wang S.; Shi G.; Zhang J.; Wan X. H. Thermoswitching of helical inversion of dynamic polyphenylacetylenes through cis-trans isomerization of amide pendants. Macromolecules, 2021, 54(10), 4592-4600. doi:10.1021/acs.macromol.1c00538http://dx.doi.org/10.1021/acs.macromol.1c00538
汪胜, 张洁, 宛新华. 光学活性螺旋聚(3,5-二取代苯乙炔): 构象调控、手性传递与自组装. 高分子学报, 2021, 52(8), 898-910. doi:10.11777/j.issn1000-3304.2021.21096http://dx.doi.org/10.11777/j.issn1000-3304.2021.21096
Liu W. B.; Gao R. T.; Zhou L.; Liu N.; Chen Z.; Wu Z. Q. Combination of vancomycin and guanidinium-functionalized helical polymers for synergistic antibacterial activity and biofilm ablation. Chem. Sci., 2022, 13(35), 10375-10382. doi:10.1039/d2sc03419khttp://dx.doi.org/10.1039/d2sc03419k
Liu N.; Zhou L.; Wu Z. Q. Alkyne-palladium(II)-catalyzed living polymerization of isocyanides: an exploration of diverse structures and functions. Acc. Chem. Res., 2021, 54(20), 3953-3967. doi:10.1021/acs.accounts.1c00489http://dx.doi.org/10.1021/acs.accounts.1c00489
Song X.; Li Y. X.; Zhou L.; Liu N.; Wu Z. Q. Controlled synthesis of one-handed helical polymers carrying achiral organoiodine pendants for enantioselective synthesis of quaternary all-carbon stereogenic centers. Macromolecules, 2022, 55(11), 4441-4449. doi:10.1021/acs.macromol.2c00810http://dx.doi.org/10.1021/acs.macromol.2c00810
Wang C.; Xu L.; Zhou L.; Liu N.; Wu Z. Q. Asymmetric living supramolecular polymerization: precise fabrication of one-handed helical supramolecular polymers. Angew. Chem. Int. Ed., 2022, 61(33), e202207028. doi:10.1002/anie.202207028http://dx.doi.org/10.1002/anie.202207028
Wang S., Xie S. Y., Du H. X., Zeng H., Zhang J., Wan X. H. Visualized thermoresponsive helix-helix switch of polyphenylacetylene with a wide-range tunable transition temperature. Sci. China Chem., 2023, 66(3), 887-895.
Zhang C. H.; Wang H. L.; Geng Q. Q.; Yang T. T.; Liu L. J.; Sakai R.; Satoh T.; Kakuchi T.; Okamoto Y. Synthesis of helical poly(phenylacetylene)s with amide linkage bearing L-phenylalanine and L-phenylglycine ethyl ester pendants and their applications as chiral stationary phases for HPLC. Macromolecules, 2013, 46(21), 8406-8415. doi:10.1021/ma4015802http://dx.doi.org/10.1021/ma4015802
Naito Y.; Tang Z. L.; Iida H.; Miyabe T.; Yashima E. Enantioseparation on helical poly(phenylacetylene)s bearing cinchona alkaloid pendants as chiral stationary phases for HPLC. Chem. Lett., 2012, 41(8), 809-811. doi:10.1246/cl.2012.809http://dx.doi.org/10.1246/cl.2012.809
张春红, 王海伦, 刘方彬, 沈贤德, 刘立佳, 堺井亮介, 佐藤敏文, 覚知豊次, 岡本佳男. 侧链带有L-氨基酸乙酯的螺旋聚苯乙炔衍生物的手性识别能力研究. 高分子学报, 2013, (6), 811-816. doi:10.3724/SP.J.1105.2013.13054http://dx.doi.org/10.3724/SP.J.1105.2013.13054
Zhang C. H.; Liu F. B.; Li Y. F.; Shen X. D.; Xu X. D.; Sakai R.; Satoh T.; Kakuchi T.; Okamoto Y. Influence of stereoregularity and linkage groups on chiral recognition of poly(phenylacetylene) derivatives bearing L-leucine ethyl ester pendants as chiral stationary phases for HPLC. J. Polym. Sci. A Polym. Chem., 2013, 51(10), 2271-2278. doi:10.1002/pola.26611http://dx.doi.org/10.1002/pola.26611
Zhou Y. L.; Zhu R. Q.; Zhang C. H.; Liu X. D.; Wang Z. P.; Zhou Z. J.; Liu L. J.; Dong H. X.; Satoh T.; Okamoto Y. Synthesis of poly(phenylacetylene)s containing chiral phenylethyl carbamate residues as coated-type CSPs with high solvent tolerability. Chirality, 2020, 32(5), 547-555. doi:10.1002/chir.23199http://dx.doi.org/10.1002/chir.23199
Shi G.; Dai X.; Xu Q.; Shen J.; Wan X. H. Enantioseparation by high-performance liquid chromatography on proline-derived helical polyacetylenes. Polym. Chem., 2021, 12(2), 242-253. doi:10.1039/d0py01398fhttp://dx.doi.org/10.1039/d0py01398f
Shi G.; Dai X.; Zhou Y.; Zhang J.; Shen J.; Wan X. H. Synthesis and enantioseparation of proline-derived helical polyacetylenes as chiral stationary phases for HPLC. Polym. Chem., 2020, 11(18), 3179-3187. doi:10.1039/d0py00205dhttp://dx.doi.org/10.1039/d0py00205d
Shi G.; Li Y.; Dai X.; Shen J.; Wan X. H. Effect of pendant stereostructure on backbone conformation and enantioseparation ability of helical polyacetylene-based chiral stationary phases. Chirality, 2022, 34(4), 574-586. doi:10.1002/chir.23414http://dx.doi.org/10.1002/chir.23414
史歌, 徐茜, 代枭, 张洁, 沈军, 宛新华. 芳香取代基结构对螺旋聚乙炔高效液相色谱手性固定相手性识别性能的影响. 高等学校化学学报, 2021, 42(8), 2673-2682. doi:10.7503/cjcu20210062http://dx.doi.org/10.7503/cjcu20210062
Kishimoto Y.; Itou M.; Miyatake T.; Ikariya T.; Noyori R. Polymerization of monosubstituted acetylenes with a zwitterionic rhodium(I) complex, Rh+(2,5-norhornadiene) [(ƞ6-C6H5)B-(C6H5)3]. Macromolecules, 1995, 28(19), 6662-6666.
Shen J.; Wang F.; Bi W. Y.; Liu B.; Liu S. Y.; Okamoto Y. Synthesis of cellulose carbamates bearing regioselective substituents at 2,3- and 6-positions for efficient chromatographic enantioseparation. J. Chromatogr. A, 2018, 1572, 54-61.
Zhang Y. J.; Lin J. F.; Deng J. P. Effects of cosolvents on helical substituted polyacetylene particles prepared through suspension polymerization. J. Polym. Sci. A Polym. Chem., 2017, 55(16), 2670-2678. doi:10.1002/pola.28673http://dx.doi.org/10.1002/pola.28673
Percec V.; Rudick J. G.; Peterca M.; Wagner M.; Obata M.; Mitchell C. M.; Cho W. D.; Balagurusamy V. S. K.; Heiney P. A. Thermoreversible cis-cisoidal to cis-transoidal isomerization of helical dendronized polyphenylacetylenes. J. Am. Chem. Soc., 2005, 127(43), 15257-15264. doi:10.1021/ja055406whttp://dx.doi.org/10.1021/ja055406w
0
Views
46
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution