浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
Published:20 June 2023,
Published Online:17 February 2023,
Received:13 December 2022,
Accepted:10 January 2023
扫 描 看 全 文
王彬.联吡啶双酚铝催化开环(共)聚合制备聚酯材料[J].高分子学报,2023,54(06):778-790.
Wang Bin.Synthesis of Polyesters from Ring-opening (Co)polymerization by Aluminum Bipyridine Bisphenolate Complexes[J].ACTA POLYMERICA SINICA,2023,54(06):778-790.
王彬.联吡啶双酚铝催化开环(共)聚合制备聚酯材料[J].高分子学报,2023,54(06):778-790. DOI: 10.11777/j.issn1000-3304.2022.22433.
Wang Bin.Synthesis of Polyesters from Ring-opening (Co)polymerization by Aluminum Bipyridine Bisphenolate Complexes[J].ACTA POLYMERICA SINICA,2023,54(06):778-790. DOI: 10.11777/j.issn1000-3304.2022.22433.
有机金属配合物是研究和应用最为广泛的开环(共)聚合催化剂. 其中,Salen-铝配合物(Salen)AlX已成功用于催化环酯开环聚合、环酐(或CO
2
)/环氧烷烃开环共聚合、对映异构体立体选择性聚合以及混合单体的序列选择性聚合,极大地推动了聚酯材料的发展. 然而,由于“稀释效应”以及催化剂分解,(Salen)AlX在高单体/催化剂投料比(催化剂相对浓度较低)时催化活性会严重衰减甚至完全失活. 提高催化剂的稳定性及杂质耐受性,并抑制催化剂的“稀释效应”,在保持聚合活性和可控性的同时降低催化剂用量、减少催化剂在聚酯中的残留是环境友好高分子领域的重要研究目标之一. 我们利用稳定的吡啶环替代Salen配体中易分解的席夫碱结构,获得了高效稳定的联吡啶双酚铝氯化物(BpyBph)AlCl. 本专论总结了(BpyBph)AlCl在催化丙交酯开环聚合、环(硫)酐/环氧烷烃开环共聚合以及多组分混合单体的序列选择性聚合制备具有精确链结构的聚酯材料方面的研究进展,重点阐述了(BpyBph)AlCl在催化活性、热稳定性、杂质耐受性以及聚合可控性方面的独特优势.
Organometallics are one kind of potential catalytic system for synthesis of polyester from ring-opening (co)polymerization
because their catalytic performance can be easily modulated by tuning the Lewis acidity of the metal centre and modifying the electronic or steric effects of ligand backbone. In the past decades
the aluminum complexes with salen-type ligand have been widely used in ring-opening polymerization of cyclic ester
ring-opening copolymerization of (thio)anhydride and epoxide
stereo-selective ring-opening polymerization and chemo-selective multicomponent polymerization for farbricating well-defined polyesters. However
the traditional salen-Al complexes generally suffer from low catalytic activity or complete deactiveation at low catalyst concentration or high concentration of chain transfer agent
owing to the concentration effects and the decomposition of the catalyst caused by protic agents. It is desirable to develop catalytic system with high stability and good compatibility with protonic agents
which is important for decreasing catalyst loading
reducing the cost
minimizing the catalyst residual and increasing the molecular weight. Recently
we synthesized a series of bipyridine bisphenolate aluminum (BpyBph-Al) complexes and used these complexes to catalyze the lactide polymerization
melaic anhydride/epoxide copolymerization and thioanhydride/epoxide copolymerization. This feature article summarizes the recent progress on synthesis of polyesters by using (BpyBph-Al) complexes and discussed the their unique advantages in ring-opening (co)polymerization.
环境友好高分子催化剂开环聚合开环交替共聚有机金属配合物
Environmental-friendly polymerCatalystRing-opening polymerizationRing-opening alternating copolymerizationOrganometallics
Ragauskas A. J.; Williams C. K.; Davison B. H.; Britovsek G.; Cairney J.; Eckert C. A.; Frederick W. J.Jr, Hallett J. P.; Leak D. J.; Liotta C. L.; Mielenz J. R.; Murphy R.; Templer R.; Tschaplinski T.The path forward for biofuels and biomaterials. Science, 2006, 311(5760), 484-489. doi:10.1126/science.1114736http://dx.doi.org/10.1126/science.1114736
Hillmyer M. A.; Tolman W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc. Chem. Res., 2014, 47(8), 2390-2396. doi:10.1021/ar500121dhttp://dx.doi.org/10.1021/ar500121d
Gross R. A.; Kalra B. Biodegradable polymers for the environment. Science, 2002, 297(5582), 803-807. doi:10.1126/science.297.5582.803http://dx.doi.org/10.1126/science.297.5582.803
Zhang X. Y.; Fevre M.; Jones G. O.; Waymouth R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev., 2018, 118(2), 839-885. doi:10.1021/acs.chemrev.7b00329http://dx.doi.org/10.1021/acs.chemrev.7b00329
Thomas C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev., 2010, 39(1), 165-173. doi:10.1039/b810065ahttp://dx.doi.org/10.1039/b810065a
Sarazin Y.; Carpentier J. F. Discrete cationic complexes for ring-opening polymerization catalysis of cyclic esters and epoxides. Chem. Rev., 2015, 115(9), 3564-3614. doi:10.1021/acs.chemrev.5b00033http://dx.doi.org/10.1021/acs.chemrev.5b00033
Longo J. M.; Sanford M. J.; Coates G. W. Ring-opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: structure-property relationships. Chem. Rev., 2016, 116(24), 15167-15197. doi:10.1021/acs.chemrev.6b00553http://dx.doi.org/10.1021/acs.chemrev.6b00553
Dove A. P. Organic catalysis for ring-opening polymerization. ACS Macro Lett., 2012, 1(12), 1409-1412. doi:10.1021/mz3005956http://dx.doi.org/10.1021/mz3005956
Kamber N. E.; Jeong W.; Waymouth R. M.; Pratt R. C.; Lohmeijer B. G. G.; Hedrick J. L. Organocatalytic ring-opening polymerization. Chem. Rev., 2007, 107(12), 5813-5840. doi:10.1021/cr068415bhttp://dx.doi.org/10.1021/cr068415b
Li H.; Ai B. R.; Hong M. Stereoselective ring-opening polymerization of rac-lactide by bulky chiral and achiral N-heterocyclic carbenes. Chinese J. Polym. Sci., 2018, 36(2), 231-236. doi:10.1007/s10118-018-2071-5http://dx.doi.org/10.1007/s10118-018-2071-5
陈烨, 刘珊, 赵俊鹏. 环氧单体的有机/无金属催化开环聚合与共聚. 高分子学报, 2020, 51(10), 1067-1082. doi:10.11777/j.issn1000-3304.2020.20088http://dx.doi.org/10.11777/j.issn1000-3304.2020.20088
Kou X. H.; Li Y. Z.; Shen Y.; Li Z. B. Metal-free ring-opening alternating copolymerization of epoxides and cyclic anhydrides mediated by a ternary phosphazene base and carboxylic acids. Macromol. Chem. Phys., 2019, 220(24), 1900416. doi:10.1002/macp.201900416http://dx.doi.org/10.1002/macp.201900416
Zhang X. Y.; Jones G. O.; Hedrick J. L.; Waymouth R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem., 2016, 8(11), 1047-1053. doi:10.1038/nchem.2574http://dx.doi.org/10.1038/nchem.2574
Lin L. M.; Han D. M.; Qin J. X.; Wang S. J.; Xiao M.; Sun L. Y.; Meng Y. Z. Nonstrained γ-butyrolactone to high-molecular-weight poly(γ-butyrolactone): facile bulk polymerization using economical ureas/alkoxides. Macromolecules, 2018, 51(22), 9317-9322. doi:10.1021/acs.macromol.8b01860http://dx.doi.org/10.1021/acs.macromol.8b01860
Lin B. H.; Waymouth R. M. Organic ring-opening polymerization catalysts: reactivity control by balancing acidity. Macromolecules, 2018, 51(8), 2932-2938. doi:10.1021/acs.macromol.8b00540http://dx.doi.org/10.1021/acs.macromol.8b00540
Lohmeijer B. G. G.; Pratt R. C.; Leibfarth F.; Logan J. W.; Long D. A.; Dove A. P.; Nederberg F.; Choi J.; Wade C.; Waymouth R. M.; Hedrick J. L. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules, 2006, 39(25), 8574-8583. doi:10.1021/ma0619381http://dx.doi.org/10.1021/ma0619381
Hu L. F.; Zhang C. J.; Wu H. L.; Yang J. L.; Liu B.; Duan H. Y.; Zhang X. H. Highly active organic Lewis pairs for the copolymerization of epoxides with cyclic anhydrides: metal-free access to well-defined aliphatic polyesters. Macromolecules, 2018, 51(8), 3126-3134. doi:10.1021/acs.macromol.8b00499http://dx.doi.org/10.1021/acs.macromol.8b00499
Zhu J. B.; Chen E. Y. X. From meso-lactide to isotactic polylactide: Epimerization by B/N Lewis pairs and kinetic resolution by organic catalysts. J. Am. Chem. Soc., 2015, 137(39), 12506-12509. doi:10.1021/jacs.5b08658http://dx.doi.org/10.1021/jacs.5b08658
Naumann S.; Scholten P. B. V.; Wilson J. A.; Dove A. P. Dual catalysis for selective ring-opening polymerization of lactones: evolution toward simplicity. J. Am. Chem. Soc., 2015, 137(45), 14439-14445. doi:10.1021/jacs.5b09502http://dx.doi.org/10.1021/jacs.5b09502
Piedra-Arroni E.; Ladavière C.; Amgoune A.; Bourissou D. Ring-opening polymerization with Zn(C6F5)2-based Lewis pairs: original and efficient approach to cyclic polyesters. J. Am. Chem. Soc., 2013, 135(36), 13306-13309.
Walther P.; Naumann S. N-Neterocyclic olefin-based (Co)polymerization of a challenging monomer: Homopolymerization of ω-pentadecalactone and its copolymers with γ-butyrolactone, δ-valerolactone, and ε-caprolactone. Macromolecules, 2017, 50(21), 8406-8416. doi:10.1021/acs.macromol.7b01678http://dx.doi.org/10.1021/acs.macromol.7b01678
Hong M.; Chen J. W.; Chen E. Y. X. Polymerization of polar monomers mediated by main-group Lewis acid-base pairs. Chem. Rev., 2018, 118(20), 10551-10616. doi:10.1021/acs.chemrev.8b00352http://dx.doi.org/10.1021/acs.chemrev.8b00352
Zhang Y. T.; Miyake G. M.; John M. G.; Falivene L.; Caporaso L.; Cavallo L.; Chen E. Y. X. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Trans., 2012, 41(30), 9119-9134. doi:10.1039/c2dt30427ahttp://dx.doi.org/10.1039/c2dt30427a
王彬, 季鹤源, 李悦生. Lewis Pairs催化环酯开环聚合与环酐/环氧化物开环交替共聚. 高分子学报, 2020, 51(10), 1104-1120. doi:10.11777/j.issn1000-3304.2020.20035http://dx.doi.org/10.11777/j.issn1000-3304.2020.20035
Lidston C. A. L.; Severson S. M.; Abel B. A.; Coates G. W. Multifunctional catalysts for ring-opening copolymerizations. ACS Catal., 2022, 12(18), 11037-11070. doi:10.1021/acscatal.2c02524http://dx.doi.org/10.1021/acscatal.2c02524
Liao X.; Su Y.; Tang X. Y. Stereoselective synthesis of biodegradable polymers by salen-type metal catalysts. Sci. China Chem., 2022, 65(11), 2096-2121. doi:10.1007/s11426-022-1377-5http://dx.doi.org/10.1007/s11426-022-1377-5
Gupta K. C.; Sutar A. K. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev., 2008, 252(12-14), 1420-1450. doi:10.1016/j.ccr.2007.09.005http://dx.doi.org/10.1016/j.ccr.2007.09.005
Deacy A. C.; Gregory G. L.; Sulley G. S.; Chen T. T. D.; Williams C. K. Sequence control from mixtures: Switchable polymerization catalysis and future materials applications. J. Am. Chem. Soc., 2021, 143(27), 10021-10040. doi:10.1021/jacs.1c03250http://dx.doi.org/10.1021/jacs.1c03250
Hu C. Y.; Pang X.; Chen X. S. Self-switchable polymerization: a smart approach to sequence-controlled degradable copolymers. Macromolecules, 2022, 55(6), 1879-1893. doi:10.1021/acs.macromol.2c00085http://dx.doi.org/10.1021/acs.macromol.2c00085
Stanford M. J.; Dove A. P. Stereocontrolled ring-opening polymerisation of lactide. Chem. Soc. Rev., 2010, 39(2), 486-494. doi:10.1039/b815104khttp://dx.doi.org/10.1039/b815104k
Sanford M. J.; Van Zee N. J.; Coates G. W. Reversible-deactivation anionic alternating ring-opening copolymerization of epoxides and cyclic anhydrides: Access to orthogonally functionalizable multiblock aliphatic polyesters. Chem. Sci., 2018, 9(1), 134-142. doi:10.1039/c7sc03643dhttp://dx.doi.org/10.1039/c7sc03643d
Plajer A. J.; Williams C. K. Heterocycle/heteroallene ring-opening copolymerization: selective catalysis delivering alternating copolymers. Angew. Chem. Int. Ed., 2022, 61(1), e202104495. doi:10.1002/ange.202104495http://dx.doi.org/10.1002/ange.202104495
Pang X.; Duan R. L.; Li X.; Hu C. Y.; Wang X. H.; Chen X. S. Breaking the paradox between catalytic activity and stereoselectivity: rac-lactide polymerization by trinuclear salen-Al complexes. Macromolecules, 2018, 51(3), 906-913. doi:10.1021/acs.macromol.7b02662http://dx.doi.org/10.1021/acs.macromol.7b02662
Thevenon A.; Garden J. A.; White A. J. P.; Williams C. K. Dinuclear zinc salen catalysts for the ring opening copolymerization of epoxides and carbon dioxide or anhydrides. Inorg. Chem., 2015, 54(24), 11906-11915. doi:10.1021/acs.inorgchem.5b02233http://dx.doi.org/10.1021/acs.inorgchem.5b02233
Diment W. T.; Lindeboom W.; Fiorentini F.; Deacy A. C.; Williams C. K. Synergic heterodinuclear catalysts for the ring-opening copolymerization (ROCOP) of epoxides, carbon dioxide, and anhydrides. Acc. Chem. Res., 2022, 55(15), 1997-2010. doi:10.1021/acs.accounts.2c00197http://dx.doi.org/10.1021/acs.accounts.2c00197
Li J.; Ren B. H.; Chen S. Y.; He G. H.; Liu Y.; Ren W. M.; Zhou H.; Lu X. B. Development of highly enantioselective catalysts for asymmetric copolymerization of meso-epoxides and cyclic anhydrides: Subtle modification resulting in superior enantioselectivity. ACS Catal., 2019, 9(3), 1915-1922. doi:10.1021/acscatal.9b00113http://dx.doi.org/10.1021/acscatal.9b00113
Li J.; Ren B. H.; Wan Z. Q.; Chen S. Y.; Liu Y.; Ren W. M.; Lu X. B. Enantioselective resolution copolymerization of racemic epoxides and anhydrides: efficient approach for stereoregular polyesters and chiral epoxides. J. Am. Chem. Soc., 2019, 141(22), 8937-8942. doi:10.1021/jacs.9b02722http://dx.doi.org/10.1021/jacs.9b02722
Abel B. A.; Lidston C. A. L.; Coates G. W. Mechanism-inspired design of bifunctional catalysts for the alternating ring-opening copolymerization of epoxides and cyclic anhydrides. J. Am. Chem. Soc., 2019, 141(32), 12760-12769. doi:10.1021/jacs.9b05570http://dx.doi.org/10.1021/jacs.9b05570
Lidston C. A. L.; Abel B. A.; Coates G. W. Bifunctional catalysis prevents inhibition in reversible-deactivation ring-opening copolymerizations of epoxides and cyclic anhydrides. J. Am. Chem. Soc., 2020, 142(47), 20161-20169. doi:10.1021/jacs.0c10014http://dx.doi.org/10.1021/jacs.0c10014
Chen X. L.; Wang B.; Pan L.; Li Y. S. Synthesis of unsaturated (Co)polyesters from ring-opening copolymerization by aluminum bipyridine bisphenolate complexes with improved protonic impurities tolerance. Macromolecules, 2022, 55(9), 3502-3512. doi:10.1021/acs.macromol.2c00034http://dx.doi.org/10.1021/acs.macromol.2c00034
Tanzi M. C.; Verderio P.; Lampugnani M. G.; Resnati M.; Dejana E.; Sturani E. Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use. J. Mater. Sci.: Mater. Med., 1994, 5(6), 393-396. doi:10.1007/bf00058971http://dx.doi.org/10.1007/bf00058971
Le Borgne A.; Vincens V.; Jouglard M.; Spassky N. Ring-opening oligomerization reactions using aluminium complexes of schiff's bases as initiators. Makromolekulare Chem. Macromol. Symp., 1993, 73(1), 37-46. doi:10.1002/masy.19930730106http://dx.doi.org/10.1002/masy.19930730106
Cozzi P. G. Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev., 2004, 33(7), 410-421. doi:10.1039/b307853chttp://dx.doi.org/10.1039/b307853c
Fieser M. E.; Sanford M. J.; Mitchell L. A.; Dunbar C. R.; Mandal M.; van Zee N. J.; Urness D. M.; Cramer C. J.; Coates G. W.; Tolman W. B. Mechanistic insights into the alternating copolymerization of epoxides and cyclic anhydrides using a (salph)AlCl and iminium salt catalytic system. J. Am. Chem. Soc., 2017, 139(42), 15222-15231. doi:10.1021/jacs.7b09079http://dx.doi.org/10.1021/jacs.7b09079
Gesslbauer S.; Savela R.; Chen Y.; White A. J. P.; Romain C. Exploiting noncovalent interactions for room-temperature heteroselective rac-lactide polymerization using aluminum catalysts. ACS Catal., 2019, 9(9), 7912-7920. doi:10.1021/acscatal.9b00875http://dx.doi.org/10.1021/acscatal.9b00875
Wang M. Q.; Ding Z. Q.; Wang B.; Li Y. S. (Bipyridine bisphenolate)-aluminum/onium salt pair: a highly active binary catalyst for ring-opening polymerization of lactide with improved thermostability and protic tolerance. Polym. Chem., 2023, 14(1), 45-54. doi:10.1039/d2py01273ahttp://dx.doi.org/10.1039/d2py01273a
Schaefer J.; Zhou H.; Lee E.; Lambic N. S.; Culcu G.; Holtcamp M. W.; Rix F. C.; Lin T. P. Tertiary and quaternary phosphonium borane bifunctional catalysts for CO2/epoxidecopolymerization: a mechanistic investigation using in situ Raman spectroscopy. ACS Catal., 2022, 12(19), 11870-11885. doi:10.1021/acscatal.2c03843http://dx.doi.org/10.1021/acscatal.2c03843
Zhang H. Y.; Zhou G. Y.; Jiang M.; Zhang H. Y.; Wang H. H.; Wu Y. P.; Wang R. Bio-based polyesters with high glass-transition temperatures and gas barrier properties derived from renewable rigid tricyclic diacid or tetracyclic anhydride. Macromolecules, 2020, 53(13), 5475-5486. doi:10.1021/acs.macromol.0c00344http://dx.doi.org/10.1021/acs.macromol.0c00344
Diment W. T.; Gregory G. L.; Kerr R. W. F.; Phanopoulos A.; Buchard A.; Williams C. K. Catalytic synergy using Al(Ⅲ) and group 1 metals to accelerate epoxide and anhydride ring-opening copolymerizations. ACS Catal., 2021, 11(20), 12532-12542. doi:10.1021/acscatal.1c04020http://dx.doi.org/10.1021/acscatal.1c04020
Chen C. M.; Xu X. W.; Ji H. Y.; Wang B.; Pan L.; Luo Y.; Li Y. S. Alkali metal carboxylates: simple and versatile initiators for ring-opening alternating copolymerization of cyclic anhydrides/epoxides. Macromolecules, 2021, 54(2), 713-724. doi:10.1021/acs.macromol.0c02389http://dx.doi.org/10.1021/acs.macromol.0c02389
Zhang J. B.; Wang L. B.; Liu S. F.; Kang X. H.; Li Z. B. A Lewis pair as organocatalyst for one-pot synthesis of block copolymers from a mixture of epoxide, anhydride, and CO2. Macromolecules, 2021, 54(2), 763-772. doi:10.1021/acs.macromol.0c02647http://dx.doi.org/10.1021/acs.macromol.0c02647
Du Z. T.; Ma J. P.; Wang F.; Liu J. X.; Xu J. Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen. Green Chem., 2011, 13(3), 554-557. doi:10.1039/c0gc00837khttp://dx.doi.org/10.1039/c0gc00837k
Sanford M. J.; Peña Carrodeguas L.; Van Zee N. J.; Kleij A. W.; Coates G. W. Alternating copolymerization of propylene oxide and cyclohexene oxide with tricyclic anhydrides: Access to partially renewable aliphatic polyesters with high glass transition temperatures. Macromolecules, 2016, 49(17), 6394-6400. doi:10.1021/acs.macromol.6b01425http://dx.doi.org/10.1021/acs.macromol.6b01425
Zhu Y. Q.; Romain C.; Williams C. K. Sustainable polymers from renewable resources. Nature, 2016, 540(7633), 354-362. doi:10.1038/nature21001http://dx.doi.org/10.1038/nature21001
Wilson J. A.; Luong D.; Kleinfehn A. P.; Sallam S.; Wesdemiotis C.; Becker M. L. Magnesium catalyzed polymerization of end functionalized poly(propylene maleate) and poly(propylene fumarate) for 3D printing of bioactive scaffolds. J. Am. Chem. Soc., 2018, 140(1), 277-284. doi:10.1021/jacs.7b09978http://dx.doi.org/10.1021/jacs.7b09978
Takenouchi S.; Takasu A.; Inai Y.; Hirabayashi T. Effects of geometrical difference of unsaturated aliphatic polyesters on their biodegradability III. cross effects of molecular weight and geometric structure of poly(ethylene maleate/fumarate) and its model compounds. Polym. J., 2002, 34(12), 882-890. doi:10.1295/polymj.34.882http://dx.doi.org/10.1295/polymj.34.882
Wan Z. Q.; Ren W. M.; Yang S.; Li M. R.; Gu G. G.; Lu X. B. Reversible transformation between amorphous and crystalline states of unsaturated polyesters by cis-trans isomerization. Angew. Chem. Int. Ed., 2019, 58(49), 17636-17640. doi:10.1002/anie.201910369http://dx.doi.org/10.1002/anie.201910369
Luo, Y. Y.; Le Fer, G.; Dean, D.; Becker, M. L. 3D printing of poly(propylene fumarate) oligomers: evaluation of resin viscosity, printing characteristics and mechanical properties. Biomacromolecules, 2019, 20(4), 1699-1708. doi:10.1021/acs.biomac.9b00076http://dx.doi.org/10.1021/acs.biomac.9b00076
Wang Y. B.; Wang M. Q.; Shi Y. B.; Chen X. L.; Song D. P.; Li Y. S.; Wang B. Switchable copolymerization of maleic anhydride/epoxides/lactide mixtures: a straightforward approach to block copolymers with unsaturated polyester sequences. Macromol. Chem. Phys., 2022, 223(16), 2200079. doi:10.1002/macp.202200079http://dx.doi.org/10.1002/macp.202200079
Higashihara T.; Ueda M. Recent progress in high refractive index polymers. Macromolecules, 2015, 48(7), 1915-1929. doi:10.1021/ma502569rhttp://dx.doi.org/10.1021/ma502569r
Wang C.; Mavila S.; Worrell B. T.; Xi W. X.; Goldman T. M.; Bowman C. N. Productive exchange of thiols and thioesters to form dynamic polythioester-based polymers. ACS Macro Lett., 2018, 7(11), 1312-1316. doi:10.1021/acsmacrolett.8b00611http://dx.doi.org/10.1021/acsmacrolett.8b00611
Smith R. A.; Fu G. Y.; McAteer O.; Xu M. Z.; Gutekunst W. R. Radical approach to thioester-containing polymers. J. Am. Chem. Soc., 2019, 141(4), 1446-1451. doi:10.1021/jacs.8b12154http://dx.doi.org/10.1021/jacs.8b12154
Mavila S.; Worrell B. T.; Culver H. R.; Goldman T. M.; Wang C.; Lim C. H.; Domaille D. W.; Pattanayak S.; McBride M. K.; Musgrave C. B.; Bowman C. N. Dynamic and responsive DNA-like polymers. J. Am. Chem. Soc., 2018, 140(42), 13594-13598. doi:10.1021/jacs.8b09105http://dx.doi.org/10.1021/jacs.8b09105
Yue T. J.; Zhang M. C.; Gu G. G.; Wang L. Y.; Ren W. M.; Lu X. B. Precise synthesis of poly(thioester)s with diverse structures by copolymerization of cyclic thioanhydrides and episulfides mediated by organic ammonium salts. Angew. Chem. Int. Ed., 2019, 58(2), 618-623. doi:10.1002/anie.201812135http://dx.doi.org/10.1002/anie.201812135
Wang L. Y.; Gu G. G.; Yue T. J.; Ren W. M.; Lu X. B. Semiaromatic poly(thioester) from the copolymerization of phthalic thioanhydride and epoxide: Synthesis, structure, and properties. Macromolecules, 2019, 52(6), 2439-2445. doi:10.1021/acs.macromol.9b00073http://dx.doi.org/10.1021/acs.macromol.9b00073
Wang L. Y.; Gu G. G.; Ren B. H.; Yue T. J.; Lu X. B.; Ren W. M. Intramolecularly cooperative catalysis for copolymerization of cyclic thioanhydrides and epoxides: A dual activation strategy to well-defined polythioesters. ACS Catal., 2020, 10(12), 6635-6644. doi:10.1021/acscatal.0c00906http://dx.doi.org/10.1021/acscatal.0c00906
Chen X. L.; Wang B.; Song D. P.; Pan L.; Li Y. S. One-step synthesis of sequence-controlled polyester-block-poly(ester-alt-thioester) by chemoselective multicomponent polymerization. Macromolecules, 2022, 55(4), 1153-1164. doi:10.1021/acs.macromol.1c02303http://dx.doi.org/10.1021/acs.macromol.1c02303
0
Views
63
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution