98.0% was prepared by neodymium carboxylate-based catalyst system and Nd-BR with
cis-
1
4 content of 94.9% was prepared by neodymium phosphonate-based catalyst system. Commercial products with similar molecular weight (
M
n
) and molecular weight distribution (
M
w
/
M
n
) while different
cis-
1
4 contents were selected for comparison. The effects of
cis-
1
4 configuration on properties of Nd-BRs with similar 1
2-configuration content
molecular weight and distribution were investigated. The characteristic stress relaxation time (
τ
) decreased obviously when the total content of 1
4- configuration (
cis-
1
4 and
trans
-1
4) is greater than 99%
and the
cis-
1
4 content increases from 94.9% to 98.8%
indicating the improvement of processability. The dispersion of carbon black in rubber and bound rubber content of Nd-BR composites were improved as well. The strain-induced crystallization capability was enhanced with the increase of a small amount of
cis-
1
4 content
which significantly improved the tensile strength
tear strength
wear resistance
puncture resistance and crack resistance. It is remarked that the rolling resistance and wet-skid resistance were increased with ultra-high
cis-
1
4 content of more than 98%. Nd-BR with ultrahigh
cis-
1
4 content of
ca
. 98.5% and appropriate molecular weight distribution (
ca
. 2.8) possessed excellent processing properties
mechanical properties and dynamic mechanical properties
Zhu H.; Chen P.; Yang C. F.; Wu Y. X. Neodymium-based catalyst for the coordination polymerization of butadiene: from fundamental research to industrial application. Macromol. React. Eng., 2015, 9(5), 453-461. doi:10.1002/mren.201400063http://dx.doi.org/10.1002/mren.201400063
Zhang S.; Wu N.; Wu Y. X. Highly cis-1,4 selective polymerization of conjugated dienes catalyzed by N-heterocyclic carbene-ligated neodymium complexes. Chinese J. Polym. Sci., 2020, 38(12), 1305-1312. doi:10.1007/s10118-020-2460-4http://dx.doi.org/10.1007/s10118-020-2460-4
Pires N. M. T.; Ferreira A. A.; de Lira C. H.; Coutinho P. L. A.; Nicolini L. F.; Soares B. G.; Coutinho F. M. B. Performance evaluation of high-cis-1,4-polybutadienes. J. Appl. Polym. Sci., 2006, 99(1), 88-99. doi:10.1002/app.22386http://dx.doi.org/10.1002/app.22386
Kwag G.; Kim P.; Han S.; Choi H. Ultra high cis polybutadiene by monomeric neodymium catalyst and its tensile and dynamic properties. Polymer, 2005, 46(11), 3782-3788. doi:10.1016/j.polymer.2005.03.040http://dx.doi.org/10.1016/j.polymer.2005.03.040
Kwag G. Ultra high cis polybutadiene by monomeric neodymium catalyst and its mechanical and dynamic properties. Macromol. Res., 2010, 18(6), 533-538. doi:10.1007/s13233-010-0612-zhttp://dx.doi.org/10.1007/s13233-010-0612-z
Méndez-Hernández M. L.; Rivera-Armenta J. L.; Páramo-García U.; Galvan S. C.; García-Alamilla R.; Salazar-Cruz B. A. Synthesis of high-cis-1,4-BR with neodymium for the manufacture of tires. Int. J. Polym. Sci., 2016, 2016, 7239540. doi:10.1155/2016/7239540http://dx.doi.org/10.1155/2016/7239540
Premachandra J. K.; Mark J. E. Effects of dilution during crosslinking on strain-induced crystallization in cis-1,4-polyisoprene networks. i. experimental results. J. Macromol. Sci. A, 2002, 39(4), 287-300. doi:10.1081/ma-120003280http://dx.doi.org/10.1081/ma-120003280
Toki S.; Hsiao B. S. Nature of strain-induced structures in natural and synthetic rubbers under stretching. Macromolecules, 2003, 36(16), 5915-5917. doi:10.1021/ma034729ehttp://dx.doi.org/10.1021/ma034729e
Plagge J.; Klüppel M. Determining strain-induced crystallization of natural rubber composites by combined thermography and stress-strain measurements. Polym. Test., 2018, 66, 87-93. doi:10.1016/j.polymertesting.2017.12.021http://dx.doi.org/10.1016/j.polymertesting.2017.12.021
Hernández M.; López-Manchado M. A.; Sanz A.; Nogales A.; Ezquerra T. A. Effects of strain-induced crystallization on the segmental dynamics of vulcanized natural rubber. Macromolecules, 2011, 44(16), 6574-6580. doi:10.1021/ma201021qhttp://dx.doi.org/10.1021/ma201021q
Chen P. Z.; Zhao J. Y.; Lin Y. F.; Chang J. R.; Meng L. P.; Wang D. L.; Chen W.; Chen L.; Li L. B. In situ characterization of strain-induced crystallization of natural rubber by synchrotron radiation wide-angle X-ray diffraction: construction of a crystal network at low temperatures. Soft Matter, 2019, 15(4), 734-743. doi:10.1039/c8sm02126khttp://dx.doi.org/10.1039/c8sm02126k
Sainumsai W.; Suchiva K.; Toki S. Influence of sulphur crosslink type on the strain-induced crystallization of natural rubber vulcanizates during uniaxial stretching by in situ WAXD using a synchrotron radiation. Mater. Today Proc., 2019, 17, 1539-1548. doi:10.1016/j.matpr.2019.06.179http://dx.doi.org/10.1016/j.matpr.2019.06.179
Sotta P.; Albouy P. A. Strain-induced crystallization in natural rubber: flory's theory revisited. Macromolecules, 2020, 53(8), 3097-3109. doi:10.1021/acs.macromol.0c00515http://dx.doi.org/10.1021/acs.macromol.0c00515
Gent A. N.; Zhang L. Q. Strain-induced crystallization and strength of elastomers. I. Cis-1,4-polybutadiene. J. Polym. Sci. B Polym. Phys., 2001, 39(7), 811-817. doi:10.1002/1099-0488(20010401)39:7<811::aid-polb1055>3.0.co;2-chttp://dx.doi.org/10.1002/1099-0488(20010401)39:7<811::aid-polb1055>3.0.co;2-c
Ren Y. Q.; Zhao S. H.; Yao Q.; Li Q. Q.; Zhang X. Y.; Zhang L. Q. Effects of plasticizers on the strain-induced crystallization and mechanical properties of natural rubber and synthetic polyisoprene. RSC Adv., 2015, 5(15), 11317-11324. doi:10.1039/c4ra13504khttp://dx.doi.org/10.1039/c4ra13504k
Tosaka M.; Kohjiya S.; Murakami S.; Poompradub S.; Ikeda Y.; Toki S.; Sics I.; Hsiao B. S. Effect of network-chain length on strain-induced crystallization of NR and IR vulcanizates. Rubber Chem. Technol., 2004, 77(4), 711-723. doi:10.5254/1.3547846http://dx.doi.org/10.5254/1.3547846
Ulrich W.; Marien M.; Lowis-Gerrit-Boje M.; Christian S. G.; Dirk P.; Jacqueline W.; Mario B.; Gaurav G. Biomimetic synthetic rubber. DE patent, WO2020/043268A1. 2020-05-03.
Nie Y. J.; Gao H. H.; Wu Y. X.; Hu W. B. Thermodynamics of strain-induced crystallization of random copolymers. Soft Matter, 2014, 10(2), 343-347. doi:10.1039/c3sm52465ehttp://dx.doi.org/10.1039/c3sm52465e
Nie Y. J.; Gao H. H.; Wu Y. X.; Hu W. B. Effect of comonomer sizes on the strain-induced crystal nucleation of random copolymers. Eur. Polym. J., 2016, 81, 34-42. doi:10.1016/j.eurpolymj.2016.05.015http://dx.doi.org/10.1016/j.eurpolymj.2016.05.015
Shen Z. Q.; Song X. Y.; Xiao S. X.; Yang J. P.; Kan X. L. Coordination copolymerization of butadiene and isoprene with rare earth chloride-alcohol-aluminum trialkyl catalytic systems. Sci. China, Ser. B., 1982, (2), 124-136. doi:10.1002/app.1983.070280504http://dx.doi.org/10.1002/app.1983.070280504
Preparation of Hydroxyl Functionalized Cis-1,4 Polydienes
Copolymerization of Ethylene and Conjugated Dienes Catalyzed by Half-sandwich Scandium Complexes
Copolymerization of Myrcene and Butadiene Catalyzed by Half-sandwich Scandium Complexes
Characterization of Trans-1,4-poly(butadiene-co-isoprene) Copolymer Rubber and Its Application as Hump Strip Stocks in PCR Tires
Related Author
No data
Related Institution
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institue of Applied Chemistry, Chinese Acadamy of Sciences
School of Applied Chemistry and Engineering, University of Science and Technology of China
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology
Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-plastics(Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University