浏览全部资源
扫码关注微信
高分子合成与功能构造教育部重点实验室 浙江大学高分子科学与工程学系 杭州 310027
Yi-hu Song, E-mail: s_yh0411@zju.edu.cn
Qiang Zheng, E-mail: zhengqiang@zju.edu.cn
Published:20 May 2023,
Published Online:28 February 2023,
Received:24 December 2022,
Accepted:03 February 2023
扫 描 看 全 文
宋义虎,郑重,郑强.白炭黑/聚氧化丙烯悬浮液的分子弛豫与流变行为[J].高分子学报,2023,54(05):643-654.
Song Yi-hu,Zheng Zhong,Zheng Qiang.Molecular Relaxation and Rheological Behaviors of Silica/Poly(propylene oxide) Dispersions[J].ACTA POLYMERICA SINICA,2023,54(05):643-654.
宋义虎,郑重,郑强.白炭黑/聚氧化丙烯悬浮液的分子弛豫与流变行为[J].高分子学报,2023,54(05):643-654. DOI: 10.11777/j.issn1000-3304.2022.22443.
Song Yi-hu,Zheng Zhong,Zheng Qiang.Molecular Relaxation and Rheological Behaviors of Silica/Poly(propylene oxide) Dispersions[J].ACTA POLYMERICA SINICA,2023,54(05):643-654. DOI: 10.11777/j.issn1000-3304.2022.22443.
气相二氧化硅/聚醚低聚物悬浮液体系广泛应用于涂料、胶黏剂、锂离子电池、液体防弹衣等诸多领域. 然而,聚醚与白炭黑界面相互作用复杂,所形成的界面吸附层显著影响悬浮液的流变行为,界面层结构与流变行为调控是长期困扰学术界和工业界的难题. 本文工作详细研究了白炭黑/线形丙二醇低聚物(PPG)界面层结构与流变行为,考察了PPG分子量(0.4~4 kg/mol)的影响机制. 研究发现,PPG分子量影响其在白炭黑附近的受限状态和悬浮液流变行为. 分子量为0.4 kg/mol时,PPG通过端羟基与白炭黑表面硅羟基间氢键作用而形成较厚((1.0±0.2) nm)的玻璃化层,玻璃化层几何逾渗导致悬浮液在10 rad/s下呈现溶胶-凝胶转变;分子量为1~2 kg/mol的PPG在白炭黑粒子表面形成较薄((0.8±0.1) nm)的玻璃化层,分子量为3~4 kg/mol的PPG则在白炭黑粒子表面形成受限层,悬浮液在10 rad/s下呈溶胶行为. 玻璃化层几何逾渗和悬浮液溶胶-凝胶转变之间的关系说明,界面层分子受限程度和流变行为均受PPG羟基密度及其与白炭黑界面相互作用的影响.
Dispersions based on fumed silica/polyether oligomers are widely used in varying fields including adhesives
coatings
lithium ion batteries
and liquid armors. It has been found that the complicated interfacial interaction between silica and polyether and the resultant interfacial layers strongly influences the rheological responses of the dispersions while it is a long-standing issue to control the interfacial structure and rheological behavior in both the academy and industry. Investigated herein are the interfacial structure and rheological behaviors of silica/linear poly(propylene oxide) (PPG) oligomer dispersions as a function of molecular weight (0.4-4 kg/mol) of PPG and volume fraction of silica. The results show that a change of molecular weight of PPG in a narrow range strongly influences the molecular adsorption and restriction in the vicinity of silica nanoparticles and the rheology of the dispersions. Moreover
PPG with molecular weight of 0.4 kg/mol forms glassy layers of ((1.0±0.2) nm) on the surface of silica nanoparticles
via
hydrogen bonding between terminal hydroxyls of PPG and silanols of silica. The percolation of glassy layers at high silica loadings causes the dispersions to undergo a sol-to-gel transition at 10 rad/s. On the other hand
PPG with molecular weight of 1-2 kg/mol forms incomplete glassy layers of (0.8±0.1) nm in thickness and that of 3-4 kg/mol forms restrained layers surrounding silica nanoparticles
both yielding sol-like rheological responses up to silica volume fraction of 0.16 at 10 rad/s. Furthermore
a comparison between thresholds of percolation of glassy layers and sol-to-gel transition suggests that the degree of molecular restriction nearby silica nanoparticles and therefore the rheological behaviors of the dispersions are determined by density of terminal hydroxyls of PPG and the interaction terminal hydroxyls and silanols of silica.
白炭黑聚氧化丙烯悬浮液界面流变行为
SilicaPoly(propylene oxide)DispersionInterfaceRheological behaviors
Song Y. H.; Zheng Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog. Mater. Sci., 2016, 84, 1-58. doi:10.1016/j.pmatsci.2016.09.002http://dx.doi.org/10.1016/j.pmatsci.2016.09.002
Zheng Z.; Song Y. H.; Yang R. Q.; Zheng Q. Direct evidence for percolation of immobilized polymer layer around nanoparticles accounting for sol-gel transition in fumed silica dispersions. Langmuir, 2015, 31(50), 13478-13487. doi:10.1021/acs.langmuir.5b03899http://dx.doi.org/10.1021/acs.langmuir.5b03899
Sen S.; Xie Y. P.; Kumar S. K.; Yang H.; Bansal A.; Ho D. L.; Hall L.; Hooper J. B.; Schweizer K. S. Chain conformations and bound-layer correlations in polymer nanocomposites. Phys. Rev. Lett., 2007, 98(12), 128302. doi:10.1103/physrevlett.98.128302http://dx.doi.org/10.1103/physrevlett.98.128302
Starr F. W.; Schrøder T. B.; Glotzer S. C. Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules, 2002, 35(11), 4481-4492. doi:10.1021/ma010626phttp://dx.doi.org/10.1021/ma010626p
Buenviaje C.; Ge S. R.; Rafailovich M.; Sokolov J.; Drake J. M.; Overney R. M. Confined flow in polymer films at interfaces. Langmuir, 1999, 15(19), 6446-6450. doi:10.1021/la9816499http://dx.doi.org/10.1021/la9816499
Legrand A. P.; Lecomte N.; Vidal A.; Haidar B.; Papirer E. Application of NMR spectroscopy to the characterization of elastomer/filler interactions. J. Appl. Polym. Sci., 1992, 46(12), 2223-2232. doi:10.1002/app.1992.070461220http://dx.doi.org/10.1002/app.1992.070461220
Ndoro T. V. M.; Voyiatzis E.; Ghanbari A.; Theodorou D. N.; Böhm M. C.; Müller-Plathe F. Interface of grafted and ungrafted silica nanoparticles with a polystyrene matrix: atomistic molecular dynamics simulations. Macromolecules, 2011, 44(7), 2316-2327. doi:10.1021/ma102833uhttp://dx.doi.org/10.1021/ma102833u
Ghanbari A.; Rahimi M.; Dehghany J. Influence of surface grafted polymers on the polymer dynamics in a silica-polystyrene nanocomposite: A coarse-grained molecular dynamics investigation. J. Phys. Chem. C, 2013, 117(47), 25069-25076. doi:10.1021/jp407109rhttp://dx.doi.org/10.1021/jp407109r
Fragiadakis D.; Bokobza L.; Pissis P. Dynamics near the filler surface in natural rubber-silica nanocomposites. Polymer, 2011, 52(14), 3175-3182. doi:10.1016/j.polymer.2011.04.045http://dx.doi.org/10.1016/j.polymer.2011.04.045
Antonelli C.; Serrano B.; Baselga J.; Ozisik R.; Cabanelas J. C. Interfacial characterization of epoxy/silica nanocomposites measured by fluorescence. Eur. Polym. J., 2015, 62, 31-42. doi:10.1016/j.eurpolymj.2014.10.018http://dx.doi.org/10.1016/j.eurpolymj.2014.10.018
Harton S. E.; Kumar S. K.; Yang H.; Koga T.; Hicks K.; Lee H.; Mijovic J.; Liu M.; Vallery R. S.; Gidley D. W. Immobilized polymer layers on spherical nanoparticles. Macromolecules, 2010, 43(7), 3415-3421. doi:10.1021/ma902484dhttp://dx.doi.org/10.1021/ma902484d
Ndoro T. V. M.; Böhm M. C.; Müller-Plathe F. Interface and interphase dynamics of polystyrene chains near grafted and ungrafted silica nanoparticles. Macromolecules, 2012, 45(1), 171-179. doi:10.1021/ma2020613http://dx.doi.org/10.1021/ma2020613
Johnston K.; Harmandaris V. Hierarchical multiscale modeling of polymer-solid interfaces: atomistic to coarse-grained description and structural and conformational properties of polystyrene-gold systems. Macromolecules, 2013, 46(14), 5741-5750. doi:10.1021/ma400357rhttp://dx.doi.org/10.1021/ma400357r
Ozmusul M. S.; Picu R. C. Structure of polymers in the vicinity of convex impenetrable surfaces: the athermal case. Polymer, 2002, 43(17), 4657-4665. doi:10.1016/s0032-3861(02)00316-6http://dx.doi.org/10.1016/s0032-3861(02)00316-6
Eslami H.; Rahimi M.; Müller-Plathe F. Molecular dynamics simulation of a silica nanoparticle in oligomeric poly(methyl methacrylate): a model system for studying the interphase thickness in a polymer―nanocomposite via different properties. Macromolecules, 2013, 46(21), 8680-8692. doi:10.1021/ma401443vhttp://dx.doi.org/10.1021/ma401443v
Robertson C. G.; Roland C. M. Glass transition and interfacial segmental dynamics in polymer-particle composites. Rubber Chem. Technol., 2008, 81(3), 506-522. doi:10.5254/1.3548217http://dx.doi.org/10.5254/1.3548217
Rittigstein P.; Torkelson J. M. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B Polym. Phys., 2006, 44(20), 2935-2943. doi:10.1002/polb.20925http://dx.doi.org/10.1002/polb.20925
Ash B. J.; Siegel R. W.; Schadler L. S. Glass-transition temperature behavior of alumina/PMMA nanocomposites. J. Polym. Sci. B Polym. Phys., 2004, 42(23), 4371-4383. doi:10.1002/polb.20297http://dx.doi.org/10.1002/polb.20297
Zheng Z.; Song Y. H.; Xu H. L.; Zheng Q. Thickening of the immobilized polymer layer using trace amount of amine and its role in promoting gelation of colloidal nanocomposites. Macromolecules, 2015, 48(24), 9015-9023. doi:10.1021/acs.macromol.5b02004http://dx.doi.org/10.1021/acs.macromol.5b02004
Klonos P.; Dapei G.; Sulym I. Y.; Zidropoulos S.; Sternik D.; Deryło-Marczewska A.; Borysenko M. V.; Gun'ko V. M.; Kyritsis A.; Pissis P. Morphology and molecular dynamics investigation of PDMS adsorbed on titania nanoparticles: effects of polymer molecular weight. Eur. Polym. J., 2016, 74, 64-80. doi:10.1016/j.eurpolymj.2015.11.010http://dx.doi.org/10.1016/j.eurpolymj.2015.11.010
Cheng S. W.; Holt A. P.; Wang H. Q.; Fan F.; Bocharova V.; Martin H.; Etampawala T.; White B. T.; Saito T.; Kang N. G.; Dadmun M. D.; Mays J. W.; Sokolov A. P. Unexpected molecular weight effect in polymer nanocomposites. Phys. Rev. Lett., 2016, 116(3), 038302. doi:10.1103/physrevlett.116.038302http://dx.doi.org/10.1103/physrevlett.116.038302
Kim S. Y.; Meyer H. W.; Saalwächter K.; Zukoski C. F. Polymer dynamics in PEG-silica nanocomposites: effects of polymer molecular weight, temperature and solvent dilution. Macromolecules, 2012, 45(10), 4225-4237. doi:10.1021/ma300439khttp://dx.doi.org/10.1021/ma300439k
Lin Y.; Liu L. P.; Xu G. M.; Zhang D. G.; Guan A. G.; Wu G. Z. Interfacial interactions and segmental dynamics of poly(vinyl acetate)/silica nanocomposites. J. Phys. Chem. C, 2015, 119(23), 12956-12966. doi:10.1021/acs.jpcc.5b01240http://dx.doi.org/10.1021/acs.jpcc.5b01240
Ganesan V.; Jayaraman A. Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites. Soft Matter, 2014, 10(1), 13-38. doi:10.1039/c3sm51864ghttp://dx.doi.org/10.1039/c3sm51864g
Wu S. W.; Tang Z. H.; Guo B. C.; Zhang L. Q.; Jia D. M. Effects of interfacial interaction on chain dynamics of rubber/graphene oxide hybrids: a dielectric relaxation spectroscopy study. RSC Adv., 2013, 3(34), 14549-14559. doi:10.1039/c3ra41998chttp://dx.doi.org/10.1039/c3ra41998c
Mortezaei M.; Famili M. H. N.; Kokabi M. The role of interfacial interactions on the glass-transition and viscoelastic properties of silica/polystyrene nanocomposite. Compos. Sci. Technol., 2011, 71(8), 1039-1045. doi:10.1016/j.compscitech.2011.02.012http://dx.doi.org/10.1016/j.compscitech.2011.02.012
Galindo-Rosales F. J.; Rubio-Hernández F. J. Transient study on the shear thickening behaviour of surface modified fumed silica suspensions in polypropylene glycol. AIP Conf. Proc., 2008, 1027(1), 686-688.
Anderson B. J.; Zukoski C. F. Rheology and microstructure of entangled polymer nanocomposite melts. Macromolecules, 2009, 42(21), 8370-8384. doi:10.1021/ma9011158http://dx.doi.org/10.1021/ma9011158
Jiang T. Y.; Zukoski C. F. The effect of polymer-induced attraction on dynamical arrests of polymer composites with bimodal particle size distributions. J. Rheol., 2013, 57(6), 1669-1691. doi:10.1122/1.4822254http://dx.doi.org/10.1122/1.4822254
Gainaru C.; Böhmer R. Oligomer-to-polymer transition of poly(propylene glycol) revealed by dielectric normal modes. Macromolecules, 2009, 42(20), 7616-7618. doi:10.1021/ma901805chttp://dx.doi.org/10.1021/ma901805c
Smith B. A.; Samulski E. T.; Yu L. P.; Winnik M. A. Polymer diffusion in molten poly(propylene oxide). Macromolecules, 1985, 18(10), 1901-1905. doi:10.1021/ma00152a017http://dx.doi.org/10.1021/ma00152a017
Brandrup J.; Immergut E. H.; Grulke E. A. Polymer Handbook, 4th ed. New York: Wiley, 1999.
Xu B., Xu H. L., Song Y. H., Zheng Q. Segmental dynamics and linear rheology of nearly athermal all-polystyrene nanocomposites. Compos. Sci. Technol., 2019, 177, 111-117. doi:10.1016/j.compscitech.2019.04.025http://dx.doi.org/10.1016/j.compscitech.2019.04.025
Fan F.; Wang Y. Y.; Sokolov A. P. Ionic transport, microphase separation, and polymer relaxation in poly(propylene glycol) and lithium perchlorate mixtures. Macromolecules, 2013, 46(23), 9380-9389. doi:10.1021/ma401238khttp://dx.doi.org/10.1021/ma401238k
Gainaru C.; Hiller W.; Böhmer R. A dielectric study of oligo- and poly(propylene glycol). Macromolecules, 2010, 43(4), 1907-1914. doi:10.1021/ma9026383http://dx.doi.org/10.1021/ma9026383
Kaminski K.; Kipnusu W. K.; Adrjanowicz K.; Mapesa E. U.; Iacob C.; Jasiurkowska M.; Wlodarczyk P.; Grzybowska K.; Paluch M.; Kremer F. Comparative study on the molecular dynamics of a series of polypropylene glycols. Macromolecules, 2013, 46(5), 1973-1980. doi:10.1021/ma302611xhttp://dx.doi.org/10.1021/ma302611x
Holt A. P.; Griffin P. J.; Bocharova V.; Agapov A. L.; Imel A. E.; Dadmun M. D.; Sangoro J. R.; Sokolov A. P. Dynamics at the polymer/nanoparticle interface in poly(2-vinylpyridine)/silica nanocomposites. Macromolecules, 2014, 47(5), 1837-1843. doi:10.1021/ma5000317http://dx.doi.org/10.1021/ma5000317
Srivastava S.; Shin J. H.; Archer L. A. Structure and rheology of nanoparticle-polymer suspensions. Soft Matter, 2012, 8(15), 4097-4108. doi:10.1039/c2sm06889chttp://dx.doi.org/10.1039/c2sm06889c
Xu H. L.; Song Y. H.; Jia E. W.; Zheng Q. Dynamics heterogeneity in silica-filled nitrile butadiene rubber. J. Appl. Polym. Sci., 2018, 135(22), 46223. doi:10.1002/app.46223http://dx.doi.org/10.1002/app.46223
Tewari A.; Gokhale A. M. Nearest-neighbor distances between particles of finite size in three-dimensional uniform random microstructures. Mater. Sci. Eng. A, 2004, 385(1-2), 332-341. doi:10.1016/s0921-5093(04)00875-5http://dx.doi.org/10.1016/s0921-5093(04)00875-5
Gennes P. G. D. Polymers at an interface; a simplified view. Adv. Colloid Interface Sci., 1987, 27(3-4), 189-209. doi:10.1016/0001-8686(87)85003-0http://dx.doi.org/10.1016/0001-8686(87)85003-0
Anderson B. J.; Zukoski C. F. Nanoparticle stability in polymer melts as determined by particle second virial measurement. Macromolecules, 2007, 40(14), 5133-5140. doi:10.1021/ma0624346http://dx.doi.org/10.1021/ma0624346
0
Views
63
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution