浏览全部资源
扫码关注微信
有机光电子与分子工程教育部重点实验室 清华大学化学系 北京 100084
Published:20 June 2023,
Published Online:10 March 2023,
Received:26 December 2022,
Accepted:19 January 2023
扫 描 看 全 文
张海,张东东,段炼.基于热活化敏化荧光机制的有机发光二极管材料与器件[J].高分子学报,2023,54(06):943-961.
Zhang Hai,Zhang Dong-dong,Duan Lian.Materials and Devices of Thermally Activated Sensitized Fluorescence Organic Light-emitting Diodes[J].ACTA POLYMERICA SINICA,2023,54(06):943-961.
张海,张东东,段炼.基于热活化敏化荧光机制的有机发光二极管材料与器件[J].高分子学报,2023,54(06):943-961. DOI: 10.11777/j.issn1000-3304.2022.22446.
Zhang Hai,Zhang Dong-dong,Duan Lian.Materials and Devices of Thermally Activated Sensitized Fluorescence Organic Light-emitting Diodes[J].ACTA POLYMERICA SINICA,2023,54(06):943-961. DOI: 10.11777/j.issn1000-3304.2022.22446.
热活化敏化荧光(TSF)被称作有机发光二极管(OLED)“第四代发光技术”,是以热活化延迟荧光材料作为敏化剂,高效发光的荧光材料作为掺杂染料,通过二者之间高效的Förster能量传递实现100%激子利用,突破了三线态高效上转换与单线态高效辐射跃迁之间的矛盾. 本文围绕TSF-OLED器件的发光效率、寿命及光色等核心指标,针对激子的调控和利用这一关键科学问题,重点介绍了我们课题组近年来在TSF技术的机理研究、高效稳定敏化剂及窄光谱材料的设计开发以及高性能器件的构筑等方面的研究工作. 最后讨论了TSF技术所存在的挑战和未来发展前景.
Thermally activated sensitized fluorescence (TSF) with thermally activated delayed fluorescence materials (TADF) as sensitizers and highly efficient conventional fluorescent dopants (CFD) as emitters was called the "fourth-generation luminescence technology" of organic light-emitting diodes (OLEDs)
which can achieve 100% exciton utilization with low efficiency roll-off and narrowband emission simultaneously
compared with the traditional TADF emitters. The functionally separated materials of TSF-OLEDs are connected with each other by the rapid Förster energy transfer between sensitizer and dopant
further breaking the trade-off between effective up-conversion of triplet and impressive radiative decay of singlet. Herein
focusing on the keystone about how to realize the precise modulation and efficient utilization of excitons generated from carriers recombination
we systematically summarize the recent research progress of TSF in our group from the perspective of the efficiency
lifetime and purity of TSF-OLEDs. Starting from the luminescent mechanism of the TSF-OLEDs
we display some methods which can restrict the energy loss pathways to improve efficiency and suppress efficiency roll-off. Meanwhile
a series of sensitizers with through-space charge transfer characteristic and high stability of blue emission
and the designing strategies of many narrowband emitters including BN-MR
BODIPY and Indolocarbazole are illustrated. In addition
the construction of white-emission devices with high performance is demonstreted. Finally
the challenges and opportunities for the future development in TSF-OLEDs are also discussed.
热活化敏化荧光热活化延迟荧光敏化剂窄光谱染料
Thermally activated sensitized fluorescenceThermally activated delayed fluorescenceSensitizerNarrowband emitter
Pope M.; Kallmann H. P.; Magnante P. Electroluminescence in organic crystals. J. Chem. Phys., 1963, 38(8), 2042-2043. doi:10.1063/1.1733929http://dx.doi.org/10.1063/1.1733929
Tang C. W.; VanSlyke S. A. Organic electroluminescent diodes. Appl. Phys. Lett., 1987, 51(12), 913-915. doi:10.1063/1.98799http://dx.doi.org/10.1063/1.98799
Hong G.; Gan X. M.; Leonhardt C.; Zhang Z.; Seibert J.; Busch J. M.; Bräse S. A brief history of OLEDs-emitter development and industry milestones. Adv. Mater., 2021, 33(9), e2005630. doi:10.1002/adma.202005630http://dx.doi.org/10.1002/adma.202005630
Ma Y. G.; Zhang H. Y.; Shen J. C.; Che C. M. Electroluminescence from triplet metal—ligand charge-transfer excited state of transition metal complexes. Synth. Met., 1998, 94(3), 245-248. doi:10.1016/s0379-6779(97)04166-0http://dx.doi.org/10.1016/s0379-6779(97)04166-0
Baldo M. A.; O’Brien D. F.; You Y.; Shoustikov A.; Sibley S.; Thompson M. E.; Forrest S. R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395(6698), 151-154. doi:10.1038/25954http://dx.doi.org/10.1038/25954
Fan C.; Yang C. L. Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices. Chem. Soc. Rev., 2014, 43(17), 6439-6469. doi:10.1039/c4cs00110ahttp://dx.doi.org/10.1039/c4cs00110a
Yook K. S.; Lee J. Y. Organic materials for deep blue phosphorescent organic light-emitting diodes. Adv. Mater., 2012, 24(24), 3169-3190. doi:10.1002/adma.201200627http://dx.doi.org/10.1002/adma.201200627
Kim S.; Bae H. J.; Park S.; Kim W.; Kim J.; Kim J. S.; Jung Y.; Sul S.; Ihn S. G.; Noh C.; Kim S.; You Y. Degradation of blue-phosphorescent organic light-emitting devices involves exciton-induced generation of polaron pair within emitting layers. Nat. Commun., 2018, 9(1), 1211. doi:10.1038/s41467-018-03602-4http://dx.doi.org/10.1038/s41467-018-03602-4
Li W. J.; Pan Y. Y.; Yao L.; Liu H. C.; Zhang S. T.; Wang C.; Shen F. Z.; Lu P.; Yang B.; Ma Y. G. A hybridized local and charge-transfer excited state for highly efficient fluorescent OLEDs: molecular design, spectral character, and full exciton utilization. Adv. Opt. Mater., 2014, 2(9), 892-901. doi:10.1002/adom.201400154http://dx.doi.org/10.1002/adom.201400154
Li W. J.; Pan Y. Y.; Xiao R.; Peng Q. M.; Zhang S. T.; Ma D. G.; Li F.; Shen F. Z.; Wang Y. H.; Yang B.; Ma Y. G. Employing ∼100% excitons in OLEDs by utilizing a fluorescent molecule with hybridized local and charge-transfer excited state. Adv. Funct. Mater., 2014, 24(11), 1609-1614. doi:10.1002/adfm.201301750http://dx.doi.org/10.1002/adfm.201301750
Yang Z. Y.; Mao Z.; Xie Z. L.; Zhang Y.; Liu S. W.; Zhao J.; Xu J. R.; Chi Z. G.; Aldred M. P.. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev., 2017, 46(3), 915-1016. doi:10.1039/c6cs00368khttp://dx.doi.org/10.1039/c6cs00368k
Wong M. Y.; Zysman-Colman E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater., 2017, 29(22), 1605444. doi:10.1002/adma.201605444http://dx.doi.org/10.1002/adma.201605444
Peng Q. M.; Obolda A.; Zhang M.; Li F. Organic light-emitting diodes using a neutral π Radical as emitter: the emission from a doublet. Angew. Chem. Int. Ed., 2015, 54(24), 7091-7095. doi:10.1002/anie.201500242http://dx.doi.org/10.1002/anie.201500242
Guo H. Q.; Peng Q. M.; Chen X. K.; Gu Q. Y.; Dong S. Z.; Evans E. W.; Gillett A. J.; Ai X.; Zhang M.; Credgington D.; Coropceanu V.; Friend R. H.; Brédas J. L.; Li F. High stability and luminescence efficiency in donor-acceptor neutral radicals not following the Aufbau principle. Nat. Mater., 2019, 18(9), 977-984. doi:10.1038/s41563-019-0433-1http://dx.doi.org/10.1038/s41563-019-0433-1
Ai X.; Evans E. W.; Dong S. Z.; Gillett A. J.; Guo H. Q.; Chen Y. X.; Hele T. J. H.; Friend R. H.; Li F. Efficient radical-based light-emitting diodes with doublet emission. Nature, 2018, 563(7732), 536-540. doi:10.1038/s41586-018-0695-9http://dx.doi.org/10.1038/s41586-018-0695-9
Wang J. G.; Gu X. G.; Ma H. L.; Peng Q.; Huang X. B.; Zheng X. Y.; Sung S. H. P.; Shan G. G.; Lam J. W. Y.; Shuai Z. G.; Tang B. Z. A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nat. Commun., 2018, 9(1), 2963. doi:10.1038/s41467-018-05298-yhttp://dx.doi.org/10.1038/s41467-018-05298-y
He Z. K.; Zhao W. J.; Lam J. W. Y.; Peng Q.; Ma H. L.; Liang G. D.; Shuai Z. G.; Tang B. Z. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun., 2017, 8(1), 416. doi:10.1038/s41467-017-00362-5http://dx.doi.org/10.1038/s41467-017-00362-5
Feng H. T.; Zeng J. J.; Yin P. G.; Wang X. D.; Peng Q.; Zhao Z. J.; Lam J. W. Y.; Tang B. Z. Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects. Nat. Commun., 2020, 11(1), 2617. doi:10.1038/s41467-020-16412-4http://dx.doi.org/10.1038/s41467-020-16412-4
Aizawa N.; Pu Y. J.; Harabuchi Y.; Nihonyanagi A.; Ibuka R.; Inuzuka H.; Dhara B.; Koyama Y.; Nakayama K. I.; Maeda S.; Araoka F.; Miyajima D. Delayed fluorescence from inverted singlet and triplet excited states. Nature, 2022, 609(7927), 502-506. doi:10.1038/s41586-022-05132-yhttp://dx.doi.org/10.1038/s41586-022-05132-y
Endo A.; Ogasawara M.; Takahashi A.; Yokoyama D.; Kato Y.; Adachi C. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes: a novel mechanism for electroluminescence. Adv. Mater., 2009, 21(47), 4802-4806. doi:10.1002/adma.200900983http://dx.doi.org/10.1002/adma.200900983
Endo A.; Sato K.; Yoshimura K.; Kai T.; Kawada A.; Miyazaki H.; Adachi C. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett., 2011, 98(8), 083302. doi:10.1063/1.3558906http://dx.doi.org/10.1063/1.3558906
Uoyama H.; Goushi K.; Shizu K.; Nomura H.; Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492(7428), 234-238. doi:10.1038/nature11687http://dx.doi.org/10.1038/nature11687
Monkman A. P. Singlet generation from triplet excitons in fluorescent organic light-emitting diodes. ISRN Mater. Sci., 2013, 2013, 1-19. doi:10.1155/2013/670130http://dx.doi.org/10.1155/2013/670130
Zhang D. D.; Duan L.; Li C.; Li Y. L.; Li H. Y.; Zhang D. Q.; Qiu Y. High-efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy. Adv. Mater., 2014, 26(29), 5050-5055. doi:10.1002/adma.201401476http://dx.doi.org/10.1002/adma.201401476
Cai M. H.; Zhang D. D.; Xu J. Y.; Hong X. C.; Zhao C. G.; Song X. Z.; Qiu Y.; Kaji H.; Duan L. Unveiling the role of Langevin and trap-assisted recombination in long lifespan OLEDs employing thermally activated delayed fluorophores. ACS Appl. Mater. Interfaces, 2019, 11(1), 1096-1108. doi:10.1021/acsami.8b16784http://dx.doi.org/10.1021/acsami.8b16784
Dexter D. L. A theory of sensitized luminescence in solids. J. Chem. Phys., 1953, 21(5), 836-850. doi:10.1063/1.1699044http://dx.doi.org/10.1063/1.1699044
Zhang Y. F.; Forrest S. R. Triplet diffusion leads to triplet-triplet annihilation in organic phosphorescent emitters. Chem. Phys. Lett., 2013, 590, 106-110. doi:10.1016/j.cplett.2013.10.048http://dx.doi.org/10.1016/j.cplett.2013.10.048
Baldo M. A.; Thompson M. E.; Forrest S. R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature, 2000, 403(6771), 750-753. doi:10.1038/35001541http://dx.doi.org/10.1038/35001541
Zhang D. D.; Song X. Z.; Cai M. H.; Duan L. Blocking energy-loss pathways for ideal fluorescent organic light-emitting diodes with thermally activated delayed fluorescent sensitizers. Adv. Mater., 2018, 30(6), 1705250. doi:10.1002/adma.201705250http://dx.doi.org/10.1002/adma.201705250
Sun J. W.; Lee J. H.; Moon C. K.; Kim K. H.; Shin H.; Kim J. J. A fluorescent organic light-emitting diode with 30% external quantum efficiency. Adv. Mater., 2014, 26(32), 5684-5688. doi:10.1002/adma.201401407http://dx.doi.org/10.1002/adma.201401407
Park Y. S.; Lee S.; Kim K. H.; Kim S. Y.; Lee J. H.; Kim J. J. Exciplex-forming Co-host for organic light-emitting diodes with ultimate efficiency. Adv. Funct. Mater., 2013, 23(39), 4914-4920. doi:10.1002/adfm.201300547http://dx.doi.org/10.1002/adfm.201300547
Liu X. K.; Chen Z.; Zheng C. J.; Chen M.; Liu W.; Zhang X. H.; Lee C. S. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex. Adv. Mater., 2015, 27(12), 2025-2030. doi:10.1002/adma.201500013http://dx.doi.org/10.1002/adma.201500013
Song X. Z.; Zhang D. D.; Li H. Y.; Cai M. H.; Huang T. Y.; Duan L. Exciplex system with increased donor-acceptor distance as the sensitizing host for conventional fluorescent OLEDs with high efficiency and extremely low roll-off. ACS Appl. Mater. Interfaces, 2019, 11(25), 22595-22602. doi:10.1021/acsami.9b05963http://dx.doi.org/10.1021/acsami.9b05963
Zhang D. D.; Song X. Z.; Cai M. H.; Kaji H.; Duan L. Versatile indolocarbazole-isomer derivatives as highly emissive emitters and ideal hosts for thermally activated delayed fluorescent OLEDs with alleviated efficiency roll-off. Adv. Mater., 2018, 30(7), 1705406. doi:10.1002/adma.201705406http://dx.doi.org/10.1002/adma.201705406
Song X. Z.; Zhang D. D.; Lu Y.; Yin C.; Duan L. Understanding and manipulating the interplay of wide-energy-gap host and TADF sensitizer in high-performance fluorescence OLEDs. Adv. Mater., 2019, 31(35), e1901923. doi:10.1002/adma.201901923http://dx.doi.org/10.1002/adma.201901923
Yin C.; Zhang Y. W.; Huang T. Y.; Liu Z. Y.; Duan L.; Zhang D. D. Highly efficient and nearly roll-off-free electrofluorescent devices via multiple sensitizations. Sci. Adv., 2022, 8(30), eabp9203. doi:10.1126/sciadv.abp9203http://dx.doi.org/10.1126/sciadv.abp9203
Tao Y.; Yuan K.; Chen T.; Xu P.; Li H. H.; Chen R. F.; Zheng C.; Zhang L.; Huang W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater., 2014, 26(47), 7931-7958. doi:10.1002/adma.201402532http://dx.doi.org/10.1002/adma.201402532
Liang X.; Tu Z. L.; Zheng Y. X. Thermally activated delayed fluorescence materials: towards realization of high efficiency through strategic small molecular design. Chem. Eur. J., 2019, 25(22), 5623-5642. doi:10.1002/chem.201805952http://dx.doi.org/10.1002/chem.201805952
Wang Y. K.; Huang C. C.; Ye H.; Zhong C.; Khan A.; Yang S. Y.; Fung M. K.; Jiang Z. Q.; Adachi C.; Liao L. S. Through space charge transfer for efficient sky-blue thermally activated delayed fluorescence (TADF) emitter with unconjugated connection. Adv. Opt. Mater., 2020, 8(2), 1901150. doi:10.1002/adom.201901150http://dx.doi.org/10.1002/adom.201901150
Yin C.; Zhang D. D.; Zhang Y. W.; Lu Y.; Wang R.; Li G. M.; Duan L. High-efficiency narrow-band electro-fluorescent devices with thermally activated delayed fluorescence sensitizers combined through-bond and through-space charge transfers. CCS Chem., 2020, 2(4), 1268-1277. doi:10.31635/ccschem.020.202000243http://dx.doi.org/10.31635/ccschem.020.202000243
Huang T. Y.; Wang Q.; Xiao S.; Zhang D. D.; Zhang Y. W.; Yin C.; Yang D. Z.; Ma D. G.; Wang Z. H.; Duan L. Simultaneously enhanced reverse intersystem crossing and radiative decay in thermally activated delayed fluorophors with multiple through-space charge transfers. Angew. Chem. Int. Ed., 2021, 60(44), 23771-23776. doi:10.1002/anie.202109041http://dx.doi.org/10.1002/anie.202109041
Huang T. Y.; Wang Q.; Meng G. Y.; Duan L.; Zhang D. D. Accelerating radiative decay in blue through-space charge transfer emitters by minimizing the face-to-face donor-acceptor distances. Angew. Chem. Int. Ed., 2022, 61(12), e202200059. doi:10.1002/anie.202200059http://dx.doi.org/10.1002/anie.202200059
Mamada M.; Katagiri H.; Chan C. Y.; Lee Y. T.; Goushi K.; Nakanotani H.; Hatakeyama T.; Adachi C. Highly efficient deep-blue organic light-emitting diodes based on rational molecular design and device engineering. Adv. Funct. Mater., 2022, 32(32), 2204352. doi:10.1002/adfm.202204352http://dx.doi.org/10.1002/adfm.202204352
Monkman A. Why do we still need a stable long lifetime deep blue OLED emitter? ACS Appl. Mater. Interfaces, 2022, 14(18), 20463-20467. doi:10.1021/acsami.1c09189http://dx.doi.org/10.1021/acsami.1c09189
Chan C. Y.; Tanaka M.; Lee Y. T.; Wong Y. W.; Nakanotani H.; Hatakeyama T.; Adachi C. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photon., 2021, 15(3), 203-207. doi:10.1038/s41566-020-00745-zhttp://dx.doi.org/10.1038/s41566-020-00745-z
Jeon S. O.; Lee K. H.; Kim J. S.; Ihn S. G.; Chung Y. S.; Kim J. W.; Lee H.; Kim S.; Choi H.; Lee J. Y. High-efficiency, long-lifetime deep-blue organic light-emitting diodes. Nat. Photon., 2021, 15(3), 208-215. doi:10.1038/s41566-021-00763-5http://dx.doi.org/10.1038/s41566-021-00763-5
Zhang D. D.; Duan L. TADF sensitization targets deep-blue. Nat. Photon., 2021, 15(3), 173-174. doi:10.1038/s41566-021-00765-3http://dx.doi.org/10.1038/s41566-021-00765-3
Zhang D. D.; Cai M. H.; Zhang Y. G.; Zhang D. Q.; Duan L. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Mater. Horiz., 2016, 3(2), 145-151. doi:10.1039/c5mh00258chttp://dx.doi.org/10.1039/c5mh00258c
Chan C. Y.; Tanaka M.; Nakanotani H.; Adachi C. Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4. Nat. Commun., 2018, 9(1), 5036. doi:10.1038/s41467-018-07482-6http://dx.doi.org/10.1038/s41467-018-07482-6
Hosokai T.; Matsuzaki H.; Nakanotani H.; Tokumaru K.; Tsutsui T.; Furube A.; Nasu K.; Nomura H.; Yahiro M.; Adachi C. Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states. Sci. Adv., 2017, 3(5), e1603282. doi:10.1126/sciadv.1603282http://dx.doi.org/10.1126/sciadv.1603282
Noda H.; Chen X. K.; Nakanotani H.; Hosokai T.; Miyajima M.; Notsuka N.; Kashima Y.; Brédas J. L.; Adachi C. Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nat. Mater., 2019, 18(10), 1084-1090. doi:10.1038/s41563-019-0465-6http://dx.doi.org/10.1038/s41563-019-0465-6
Zhang D. D.; Song X. Z.; Gillett A. J.; Drummond B. H.; Jones S. T. E.; Li G. M.; He H. Q.; Cai M. H.; Credgington D.; Duan L. Efficient and stable deep-blue fluorescent organic light-emitting diodes employing a sensitizer with fast triplet upconversion. Adv. Mater., 2020, 32(19), e1908355. doi:10.1002/adma.201908355http://dx.doi.org/10.1002/adma.201908355
Hong X. C.; Zhang D. D.; Yin C.; Wang Q.; Zhang Y. W.; Huang T. Y.; Wei J. B.; Zeng X.; Meng G. Y.; Wang X.; Li G. M.; Yang D. Z.; Ma D. G.; Duan L. TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. Chem, 2022, 8(6), 1705-1719. doi:10.1016/j.chempr.2022.02.017http://dx.doi.org/10.1016/j.chempr.2022.02.017
Zhang D. D.; Wada Y.; Wang Q.; Dai H. Y.; Fan T. J.; Meng G. Y.; Wei J. B.; Zhang Y. W.; Suzuki K.; Li G. M.; Duan L.; Kaji H. Highly efficient and stable blue organic light-emitting diodes based on thermally activated delayed fluorophor with donor-void-acceptor motif. Adv. Sci. (Weinh), 2022, 9(12), e2106018. doi:10.1002/advs.202106018http://dx.doi.org/10.1002/advs.202106018
Kim H. J.; Yasuda T. Narrowband emissive thermally activated delayed fluorescence materials. Adv. Opt. Mater., 2022, 10(22), 2201714. doi:10.1002/adom.202201714http://dx.doi.org/10.1002/adom.202201714
Hatakeyama T.; Shiren K.; Nakajima K.; Nomura S.; Nakatsuka S.; Kinoshita K.; Ni J. P.; Ono Y.; Ikuta T. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect. Adv. Mater., 2016, 28(14), 2777-2781. doi:10.1002/adma.201505491http://dx.doi.org/10.1002/adma.201505491
Fan T. J.; Zhang Y. W.; Zhang D. D.; Duan L. Decoration strategy in para boron position: an effective way to achieve ideal multi-resonance emitters. Chem. Eur. J., 2022, 28(27), e202104624. doi:10.1002/chem.202104624http://dx.doi.org/10.1002/chem.202104624
Zhang Y. W.; Zhang D. D.; Wei J. B.; Liu Z. Y.; Lu Y.; Duan L. Multi-resonance induced thermally activated delayed fluorophores for narrowband green OLEDs. Angew. Chem. Int. Ed., 2019, 58(47), 16912-16917. doi:10.1002/anie.201911266http://dx.doi.org/10.1002/anie.201911266
Zhang Y. W.; Li G. M.; Wang L.; Huang T. Y.; Wei J. B.; Meng G. Y.; Wang X.; Zeng X.; Zhang D. D.; Duan L. Fusion of multi-resonance fragment with conventional polycyclic aromatic hydrocarbon for nearly BT.2020 green emission. Angew. Chem. Int. Ed., 2022, 61(24), e202202380. doi:10.1002/anie.202202380http://dx.doi.org/10.1002/anie.202202380
Zhang Y. W.; Zhang D. D.; Huang T. Y.; Gillett A. J.; Liu Y.; Hu D. P.; Cui L. S.; Bin Z. Y.; Li G. M.; Wei J. B.; Duan L. Multi-resonance deep-red emitters with shallow potential-energy surfaces to surpass energy-gap law. Angew. Chem. Int. Ed., 2021, 60(37), 20498-20503. doi:10.1002/anie.202107848http://dx.doi.org/10.1002/anie.202107848
Zhang Y. W.; Wei J. B.; Zhang D. D.; Yin C.; Li G. M.; Liu Z. Y.; Jia X. Q.; Qiao J.; Duan L. Sterically wrapped multiple resonance fluorophors for suppression of concentration quenching and spectrum broadening. Angew. Chem. Int. Ed., 2022, 61(2), e202113206. doi:10.1002/ange.202113206http://dx.doi.org/10.1002/ange.202113206
Wang X.; Zhang Y. W.; Dai H. Y.; Li G. M.; Liu M. H.; Meng G. Y.; Zeng X.; Huang T. Y.; Wang L.; Peng Q.; Yang D. Z.; Ma D. G.; Zhang D. D.; Duan L. Mesityl-functionalized multi-resonance organoboron delayed fluorescent frameworks with wide-range color tunability for narrowband OLEDs. Angew. Chem. Int. Ed., 2022, 61(38), e202206916. doi:10.1002/anie.202206916http://dx.doi.org/10.1002/anie.202206916
Meng G. Y.; Dai H. Y.; Huang T. Y.; Wei J. B.; Zhou J. P.; Li X.; Wang X.; Hong X. C.; Yin C.; Zeng X.; Zhang Y. W.; Yang D. Z.; Ma D. G.; Li G. M.; Zhang D. D.; Duan L. Amine-directed formation of B-N bonds for BN-fused polycyclic aromatic multiple resonance emitters with narrowband emission. Angew. Chem. Int. Ed., 2022, 61(40), e202207293. doi:10.1002/anie.202207293http://dx.doi.org/10.1002/anie.202207293
Song X. Z.; Zhang D. D.; Zhang Y. W.; Lu Y.; Duan L. Strategically modulating carriers and excitons for efficient and stable ultrapure-green fluorescent OLEDs with a sterically hindered BODIPY dopant. Adv. Opt. Mater., 2020, 8(15), 2000483. doi:10.1002/adom.202000483http://dx.doi.org/10.1002/adom.202000483
Lee H. L.; Chung W. J.; Lee J. Y. Narrowband and pure violet organic emitter with a full width at half maximum of 14 nm and y color coordinate of below 0.02. Small, 2020, 16(14), e1907569. doi:10.1002/smll.201907569http://dx.doi.org/10.1002/smll.201907569
Wei J. B.; Zhang C.; Zhang D. D.; Zhang Y. W.; Liu Z. Y.; Li Z. Q.; Yu G.; Duan L. Indolo[3,2,1-jk]carbazole embedded multiple-resonance fluorophors for narrowband deep-blue electroluminescence with EQE≈34.7% and CIEy ≈0.085. Angew. Chem. Int. Ed., 2021, 60(22), 12269-12273. doi:10.1002/anie.202017328http://dx.doi.org/10.1002/anie.202017328
Zeng X.; Wang X.; Zhang Y. W.; Meng G. Y.; Wei J. B.; Liu Z. Y.; Jia X. Q.; Li G. M.; Duan L.; Zhang D. D. Nitrogen-embedded multi-resonance heteroaromatics with prolonged homogeneous hexatomic rings. Angew. Chem. Int. Ed. 2022, 61(14), e202117181. doi:10.1002/anie.202117181http://dx.doi.org/10.1002/anie.202117181
Zhang D. D.; Duan L.; Li Y. L.; Zhang D. Q.; Qiu Y. Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material with thermally activated delayed fluorescence. J. Mater. Chem. C, 2014, 2(38), 8191-8197. doi:10.1039/c4tc01289ehttp://dx.doi.org/10.1039/c4tc01289e
Zhang D. D.; Duan L.; Zhang Y. G.; Cai M. H.; Zhang D. Q.; Qiu Y. Highly efficient hybrid warm white organic light-emitting diodes using a blue thermally activated delayed fluorescence emitter: exploiting the external heavy-atom effect. Light. Sci. Appl., 2015, 4(1), e232. doi:10.1038/lsa.2015.5http://dx.doi.org/10.1038/lsa.2015.5
Zhang D. D.; Cai M. H.; Zhang Y. G.; Zhang D. Q.; Duan L. Highly efficient simplified single-emitting-layer hybrid WOLEDs with low roll-off and good color stability through enhanced Förster energy transfer. ACS Appl. Mater. Interfaces, 2015, 7(51), 28693-28700. doi:10.1021/acsami.5b10783http://dx.doi.org/10.1021/acsami.5b10783
Wei P. C.; Zhang D. D.; Cai M. H.; Song X. Z.; Wang Z. Y.; Duan L. Simplified single-emitting-layer hybrid white organic light-emitting diodes with high efficiency, low efficiency roll-off, high color rendering index and superior color stability. Org. Electron., 2017, 49, 242-248. doi:10.1016/j.orgel.2017.05.013http://dx.doi.org/10.1016/j.orgel.2017.05.013
Wei P. C.; Zhang D. D.; Duan L. Modulation of Förster and dexter interactions in single-emissive-layer all-fluorescent WOLEDs for improved efficiency and extended lifetime. Adv. Funct. Mater., 2020, 30(6), 1907083. doi:10.1002/adfm.201907083http://dx.doi.org/10.1002/adfm.201907083
Zhang C.; Lu Y.; Liu Z. Y.; Zhang Y. W.; Wang X. W.; Zhang D. D.; Duan L. A π-D and π-A exciplex-forming host for high-efficiency and long-lifetime single-emissive-layer fluorescent white organic light-emitting diodes. Adv. Mater., 2020, 32(42), e2004040. doi:10.1002/adma.202004040http://dx.doi.org/10.1002/adma.202004040
Zhang C.; Zhang D. D.; Bin Z. Y.; Liu Z. Y.; Zhang Y. W.; Lee H.; Kwon J. H.; Duan L. Color-tunable all-fluorescent white organic light-emitting diodes with a high external quantum efficiency over 30% and extended device lifetime. Adv. Mater., 2022, 34(22), e2103102. doi:10.11777/j.issn1000-3304.2022.22446http://dx.doi.org/10.11777/j.issn1000-3304.2022.22446
0
Views
61
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution