浏览全部资源
扫码关注微信
1.四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
2.中国石油化工股份有限公司北京化工研究院 北京 100013
Fa-sheng Zou, E-mail: zoufs.bjhy@sinopec.com
Hong-wei Bai, E-mail: hongweibai@scu.edu.cn
Published:20 August 2023,
Published Online:19 April 2023,
Received:11 February 2023,
Accepted:14 March 2023
扫 描 看 全 文
乔泽爽,邹发生,宋文波等.基于结晶调控制备低收缩聚丙烯[J].高分子学报,2023,54(08):1186-1195.
Qiao Ze-shuang,Zou Fa-sheng,Song Wen-bo,et al.Preparation of Low-shrinkage Polypropylene by Tailoring Crystallization[J].ACTA POLYMERICA SINICA,2023,54(08):1186-1195.
乔泽爽,邹发生,宋文波等.基于结晶调控制备低收缩聚丙烯[J].高分子学报,2023,54(08):1186-1195. DOI: 10.11777/j.issn1000-3304.2022.22450.
Qiao Ze-shuang,Zou Fa-sheng,Song Wen-bo,et al.Preparation of Low-shrinkage Polypropylene by Tailoring Crystallization[J].ACTA POLYMERICA SINICA,2023,54(08):1186-1195. DOI: 10.11777/j.issn1000-3304.2022.22450.
针对等规聚丙烯(
i
PP)在熔融加工成型过程中会因结晶而引起收缩率大、制品尺寸精度差这一关键问题,提出基于结晶调控来有效降低成型收缩率的解决思路. 利用
β
成核剂(
β
-NA)来调控
i
PP的结晶结构与形貌,采用示差扫描量热仪(DSC)、X射线衍射仪(XRD)、偏光显微镜(POM)和扫描电子显微镜(SEM)等方法系统分析了
β
结晶对
i
PP注塑制品的体积收缩率和线收缩率的影响规律. 结果表明,纯
i
PP在结晶过程中主要形成
α
晶体,但少量
β
-NA (0.05 wt%~0.5 wt%)的加入可诱导
i
PP结晶形成大量密度较低的
β
晶体,且随
β
-NA含量的增加,
β
晶体的形貌由球晶转变为独特的捆束状晶体. 相较于普通
α
晶体,较低密度
β
晶体的形成可有效降低
i
PP制品沿各个方向上的收缩率. 特别地,当
β
晶体的含量由3.6%增加到81.7%时,制品的线收缩率可从1.7%减小到1.2%,体收缩率则从12.2%减小到10.6%,这与理论预测的结果基本一致. 进一步分析发现,
β
-NA可在
i
PP熔体中自组装形成容易沿流动方向取向的纤维状晶体,进而诱导
i
PP分子链取向结晶,因此制品线收缩率呈各向异性. 同时,收缩率主要取决于制品中
β
晶体的含量,而与结晶形貌没有明显关系. 研究结果可望为低收缩
i
PP新材料的开发提供依据.
Isotactic polypropylene (
i
PP) suffers from high mold shrinkage mostly associated with the crystallization-induced volume shrinkage during the melt-processing
which inevitably leads to an inaccurate size of final products. In this work
a facile and effective strategy based on the crystallization manipulation has been reported to address this issue. To do this
β
-nucleating agent (
β
-NA) was utilized to tailor the crystalline structure and morphology of
i
PP. The effect of
β
-form crystallization on the volume shrinkage
and linear shrinkage of injection-molded
i
PP products has been analyzed by differential scanning calorimetry (DSC)
X-ray diffraction (XRD)
polarized optical microscopy (POM)
and scanning electron microscopy (SEM). The results show that
neat
i
PP can exclusively crystallize into
α
-form crystals upon non-isothermal melt-crystallization
whereas abundant
β
-form crystals are induced by adding small amounts (0.05 wt%‒0.5 wt%) of
β
-NA. Moreover
with the increase of
β
-NA content
the
β
-crystalline morphology is found to change from typical spherulites to unique bundle-like crystals. Very interesting
the predominant formation of
β
-form crystals can markedly reduce the shrinkage of the
i
PP products. Especially
when the fraction of
β
-form crystals is increased from 3.6% to 90.6%
the linear shrinkage of the products is found to decrease from 1.7% to 1.2%
while their volume shrinkage declines from 12.2% to 10.6%. This finding is in good accordance with the theoretical calculation. Further analysis indicates that such
β
-NA can self-organize into fibrillar crystals in
i
PP melts
which are prone to orientate along the flow direction and then induce the orientational crystallization of
i
PP chains
ultimately leading to the anisotropic shrinkage. Moreover
the shrinkage is heavily dependent on the fraction of
β
-form crystals
rather than the crystalline morphology. This work could provide a guideline for the development of low-shrinkage
i
PP materials.
聚丙烯结晶低收缩
PolypropyleneCrystallizationLow shrinkage
Zhao X. T.; Liao T.; Yang X.; Coates P.; Whiteside B.; Barker D.; Thompson G.; Jiang Z. Y.; Men Y. F. Mold temperature- and molar mass-dependent structural formation in micro-injection molding of isotactic polypropylene. Polymer, 2022, 248, 124797. doi:10.1016/j.polymer.2022.124797http://dx.doi.org/10.1016/j.polymer.2022.124797
杜惠真, 杨飞, 张坤玉, 马哲, 王彬, 潘莉, 李悦生. 等规聚丙烯离聚体增容聚丙烯/尼龙11共混体系研究. 高分子学报, 2018, (12), 1539-1547. doi:10.11777/j.issn1000-3304.2018.18090http://dx.doi.org/10.11777/j.issn1000-3304.2018.18090
张志箭, 王莉, 祖凤华, 洪柳婷, 秦亚伟, 董金勇. α-烯烃基甲基二氯硅烷调控丙烯多相共聚制备高熔体强度高抗冲聚丙烯. 高分子学报, 2020, 51(7), 744-753. doi:10.11777/j.issn1000-3304.2020.20017http://dx.doi.org/10.11777/j.issn1000-3304.2020.20017
Maier, C.; Calafut, T. Polypropylene: the Definitive user's Guide and Databook. Norwich: William Andrew, 1998. 151-152, 171.
Fujiyama M.; Kimura S. Effect of molecular parameters on the shrinkage of injection-molded polypropylene. J. Appl. Polym. Sci., 1978, 22(5), 1225-1241. doi:10.1002/app.1978.070220506http://dx.doi.org/10.1002/app.1978.070220506
Mulle M.; Wafai H.; Yudhanto A.; Lubineau G.; Yaldiz R.; Schijve W.; Verghese N. Influence of process-induced shrinkage and annealing on the thermomechanical behavior of glass fiber-reinforced polypropylene. Compos. Sci. Technol., 2019, 170, 183-189. doi:10.1016/j.compscitech.2018.12.005http://dx.doi.org/10.1016/j.compscitech.2018.12.005
Ryu Y.; Sohn J. S.; Kweon B. C.; Cha S. W. Shrinkage optimization in talc- and glass-fiber-reinforced polypropylene composites. Materials (Basel), 2019, 12(5), 764. doi:10.3390/ma12050764http://dx.doi.org/10.3390/ma12050764
Jahani Y. Dynamic rheology, mechanical performance, shrinkage, and morphology of chemically coupled talc-filled polypropylene. J. Vinyl Addit. Technol., 2010, 16(1), 70-77. doi:10.1002/vnl.20209http://dx.doi.org/10.1002/vnl.20209
Chen X. L.; Zhang T. Z.; Sun P. L.; Yu F. J.; Li B.; Dun L. N. Study on the performance and mechanism of modified mica for improving polypropylene composites. Int. J. Low. Carbon. Technol., 2022, 17, 176-184. doi:10.1093/ijlct/ctab098http://dx.doi.org/10.1093/ijlct/ctab098
Shelesh-Nezhad K.; Taghizadeh A. Shrinkage behavior and mechanical performances of injection molded polypropylene/talc composites. Polym. Eng. Sci., 2007, 47(12), 2124-2128. doi:10.1002/pen.20940http://dx.doi.org/10.1002/pen.20940
Tran M. V.; Cu Y. T. H.; Le C. V. H. Rheology and shrinkage of concrete using polypropylene fiber for 3D concrete printing. J. Build. Eng., 2021, 44, 103400. doi:10.1016/j.jobe.2021.103400http://dx.doi.org/10.1016/j.jobe.2021.103400
Wu L. P.; Kang W. L.; Chen Y.; Zhang X.; Lin X. H.; Chen L. Y.; Gai J. G. Structures and properties of low-shrinkage polypropylene composites. J. Appl. Polym. Sci., 2017, 134(7), 44275. doi:10.1002/app.44275http://dx.doi.org/10.1002/app.44275
Kościuszko A.; Marciniak D.; Sykutera D. Post-processing time dependence of shrinkage and mechanical properties of injection-molded polypropylene. Materials (Basel), 2020, 14(1), 22. doi:10.3390/ma14010022http://dx.doi.org/10.3390/ma14010022
Xu Y. J.; Yang W.; Xie B. H.; Liu Z. Y.; Yang M. B. Effect of injection parameters and addition of nanoscale materials on the shrinkage of polypropylene copolymer. J. Macromol. Sci. B, 2009, 48(3), 573-586. doi:10.1080/00222340902837741http://dx.doi.org/10.1080/00222340902837741
Qi G. Q.; Xu Y. J.; Yang W.; Xie B. H.; Yang M. B. Injection molding shrinkage and mechanical properties of polypropylene blends. J. Macromol. Sci. B, 2011, 50(9), 1747-1760. doi:10.1080/00222348.2011.583798http://dx.doi.org/10.1080/00222348.2011.583798
Grestenberger G.; Potter G. D.; Grein C. Polypropylene/ethylene-propylene rubber (PP/EPR) blends for the automotive industry: basic correlations between EPR-design and shrinkage. Express Polym. Lett., 2014, 8(4), 282-292. doi:10.3144/expresspolymlett.2014.31http://dx.doi.org/10.3144/expresspolymlett.2014.31
黄险波, 李永华, 罗忠富, 陈锐, 杨波. 相容剂对PP/POE共混体系脆韧转变行为的影响. 高分子学报, 2012, (12), 1441-1447.
Krache R.; Benavente R.; López-Majada J. M.; Pereña J. M.; Cerrada M. L.; Pérez E. Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules, 2007, 40(19), 6871-6878. doi:10.1021/ma0710636http://dx.doi.org/10.1021/ma0710636
Zhang H. F.; Liu J. X.; Zhang X.; Huang C.; Jin X. Y. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture. RSC Adv., 2018, 8(15), 7932-7941. doi:10.1039/c7ra10916dhttp://dx.doi.org/10.1039/c7ra10916d
Li Y. J.; Liu H. Y.; Huang X. L.; Song X. D.; Kang J.; Chen Z. F.; Zeng F.; Chen J. Y. Investigation on the roles of β-nucleating agents in crystallization and polymorphic behavior of isotactic polypropylene. Polym. Sci. Ser. A, 2020, 62(5), 470-480. doi:10.1134/s0965545x20050119http://dx.doi.org/10.1134/s0965545x20050119
Gou J.; Zhang L.; Li C. Z. A new method combining modification of montmorillonite and crystal regulation to enhance the mechanical properties of polypropylene. Polym. Test., 2020, 82, 106236. doi:10.1016/j.polymertesting.2019.106236http://dx.doi.org/10.1016/j.polymertesting.2019.106236
Ferrer-Balas D.; Maspoch M. L.; Martinez A. B.; Santana O. O. Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films. Polymer, 2001, 42(4), 1697-1705. doi:10.1016/s0032-3861(00)00487-0http://dx.doi.org/10.1016/s0032-3861(00)00487-0
ISO 294-4: 2018. Plastics-Injection Moulding of Test Specimens of Thermoplastic Materials-Part 4: Determination of Moulding Shrinkage, Switzerland: Geneva, 2018. doi:10.1021/acs.jmedchem.8b00050http://dx.doi.org/10.1021/acs.jmedchem.8b00050
Li J. X.; Cheung W. L. On the deformation mechanisms of β-polypropylene: 1. Effect of necking on β-phase PP crystals. Polymer, 1998, 39(26), 6935-6940. doi:10.1016/s0032-3861(98)00144-xhttp://dx.doi.org/10.1016/s0032-3861(98)00144-x
Gee D. R.; Melia T. P. Thermal properties of melt and solution crystallized isotactic polypropylene. Macromol. Chem. Phys., 1970, 132, 195-201. doi:10.1002/macp.1970.021320117http://dx.doi.org/10.1002/macp.1970.021320117
Li J. X.; Cheung W. L.; Jia D. M. A study on the heat of fusion of β-polypropylene. Polymer, 1999, 40(5), 1219-1222. doi:10.1016/s0032-3861(98)00345-0http://dx.doi.org/10.1016/s0032-3861(98)00345-0
Olley R. H.; Bassett D. C. An improved permanganic etchant for polyolefines. Polymer, 1982, 23(12), 1707-1710. doi:10.1016/0032-3861(82)90110-0http://dx.doi.org/10.1016/0032-3861(82)90110-0
Yang S. G.; Zhang Z. C.; Zhou D.; Wang Y.; Lei J.; Li L. B.; Li Z. M. Flow and pressure jointly induced ultrahigh melting temperature spherulites with oriented thick lamellae in isotactic polypropylene. Macromolecules, 2015, 48(16), 5834-5844. doi:10.1021/acs.macromol.5b01043http://dx.doi.org/10.1021/acs.macromol.5b01043
Chen Y. H.; Mao Y. M.; Li Z. M.; Hsiao B. S. Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules, 2010, 43(16), 6760-6771. doi:10.1021/ma101006ehttp://dx.doi.org/10.1021/ma101006e
Nishikawa R.; Aridome N.; Ojima N.; Yamaguchi M. Structure and properties of fiber-reinforced polypropylene prepared by direct incorporation of aqueous solution of poly(vinyl alcohol). Polymer, 2020, 199, 122566. doi:10.1016/j.polymer.2020.122566http://dx.doi.org/10.1016/j.polymer.2020.122566
de Lima L. R. M.; Trindade T.; Oliveira J. M. Non-isothermal crystallization kinetics of poly(propylene)-based graphene nanocomposites for injection moulding. J. Therm. Anal. Calorim., 2022, 147(24), 14229-14240. doi:10.1007/s10973-022-11741-6http://dx.doi.org/10.1007/s10973-022-11741-6
Hermans J. J.; Hermans P. H.; Vermaas D.; Weidinger A. Quantitative evaluation of orientation in cellulose fibres from the X-ray fibre diagram. Recl. Trav. Chim. Pays-Bas, 1946, 65(6), 427-447. doi:10.1002/recl.19460650605http://dx.doi.org/10.1002/recl.19460650605
Liu F. H.; Guo C.; Wu X.; Qian X. Y.; Liu H.; Zhang J. Morphological comparison of isotactic polypropylene parts prepared by micro-injection molding and conventional injection molding. Polym. Adv. Technol., 2012, 23(3), 686-694. doi:10.1002/pat.1946http://dx.doi.org/10.1002/pat.1946
Bai H. W.; Huang C. M.; Xiu H.; Zhang Q.; Fu Q. Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer, 2014, 55(26), 6924-6934. doi:10.1016/j.polymer.2014.10.059http://dx.doi.org/10.1016/j.polymer.2014.10.059
Altan M. Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods. Mater. Des., 2010, 31(1), 599-604. doi:10.1016/j.matdes.2009.06.049http://dx.doi.org/10.1016/j.matdes.2009.06.049
Jacoby P.; Bersted B. H.; Kissel W. J.; Smith C. E. Studies on the β-crystalline form of isotactic polypropylene. J. Polym. Sci. B Polym. Phys., 1986, 24(3), 461-491. doi:10.1002/polb.1986.090240301http://dx.doi.org/10.1002/polb.1986.090240301
刘伟, 王向东. 高熔体强度聚丙烯/低密度聚乙烯共混体系的挤出发泡行为研究. 工程塑料应用, 2011, 39(10), 78-83. doi:10.3969/j.issn.1001-3539.2011.10.019http://dx.doi.org/10.3969/j.issn.1001-3539.2011.10.019
0
Views
73
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution