浏览全部资源
扫码关注微信
精细化工国家重点实验室 大连理工大学 大连 116024
Wei-min Ren, E-mail: wmren@dlut.edu.cn
Published:20 August 2023,
Published Online:10 April 2023,
Received:29 December 2022,
Accepted:21 February 2023
扫 描 看 全 文
章吉,乐天俊,巢济岩等.聚二硫化物的光降解行为研究[J].高分子学报,2023,54(08):1196-1204.
Zhang Ji,Yue Tian-jun,Chao Ji-yan,et al.Photodegradation of Poly(disulfide)s[J].ACTA POLYMERICA SINICA,2023,54(08):1196-1204.
章吉,乐天俊,巢济岩等.聚二硫化物的光降解行为研究[J].高分子学报,2023,54(08):1196-1204. DOI: 10.11777/j.issn1000-3304.2022.22452.
Zhang Ji,Yue Tian-jun,Chao Ji-yan,et al.Photodegradation of Poly(disulfide)s[J].ACTA POLYMERICA SINICA,2023,54(08):1196-1204. DOI: 10.11777/j.issn1000-3304.2022.22452.
系统地研究了不同结构聚二硫化物的光降解行为,并探索了溶剂、聚二硫化物的分子量、浓度以及光照波长对其降解行为的影响. 研究结果显示,不同起始分子量的聚二硫化物以不同的速率降解,最终形成相同分子量的线形或者环状聚二硫化物;起始浓度越高,到达光降解平衡时聚二硫化物的分子量越高;辐射波长越短,降解速率越小,到达平衡所需的时间越长. 结合降解产物的核磁共振氢谱以及质谱的分析结果,提出了聚二硫化物光降解机理:在紫外-近紫外光照射下,聚二硫化物断裂生成自由基碎片,不同自由基碎片通过分子间或者分子内的重组,形成低分子量的线形或者环状聚二硫化物.
Poly(disulfide)s
a typical dynamic polymer
could be degraded by light
heat or chemical reductant due to its disulfide bonds in main chain. The degradation methods of poly(disulfide)s reported mainly include in the reductive or thermal degradation. However
the photodegradation of the poly(disulfide)s behavior
as well as the degrading mechanism is less involved. In this work
a systemic investigation on the photodegradation of poly(disulfide)s is presented. Under the irradiation of near UV-Vis light
the linear poly(disulfide)s are degraded into cyclic or linear poly(disulfide)s with low molecular weight. In addition
the effects of light wavelength
molecular weight and concentration of poly(disulfide)s on degradation rate were explored. Under the same conditions
poly(disulfide)s with different initial molecular weights are degraded into linear or cyclic poly(disulfide)s with the approximate molecular weight in different degradation rates; the higher the initial concentration
the higher molecular weight of poly(disulfide) is at the equilibrium state; the shorter the radiation wavelength
the longer the time is needed to reach the photodegradation equilibrium. In addition
based on the analysis of degradation products
the corresponding degradation mechanism is proposed
that is
with the irradiation of UV-Vis light
the disulfide bonds in the poly(disulfide)s homo-cleaved into corresponding sulfur free radical fragments
and different free radical fragments form linear or cyclic poly(disulfide)s with low molecular weight through intermolecular or intramolecular recombination. The photodegradation gives a new idea on the further degradation of poly(disulfide)s or other polymers with disulfide bonds.
聚二硫化物二硫复分解紫外-近紫外光光降解
Poly(disulfide)sDisulfide metathesisUV-Vis lightPhotodegradation
蒋海斌, 张晓红, 刘文璐, 王崧合, 张梁栋, 姜超, 乔金樑. 微波辅助聚合物循环利用研究进展. 高分子学报, 2022, 53(9), 1032-1040. doi:10.11777/j.issn1000-3304.2022.22104http://dx.doi.org/10.11777/j.issn1000-3304.2022.22104
曹艳, 邱清华, 郭宝春, 贾德民. 废旧高分子材料回收利用的进展. 高分子材料科学与工程, 2004, 20(5): 33-36. doi:10.3321/j.issn:1000-7555.2004.05.008http://dx.doi.org/10.3321/j.issn:1000-7555.2004.05.008
Choi C.; Self J. L.; Okayama Y.; Levi A. E.; Gerst M.; Speros J. C.; Hawker C. J.; Read de Alaniz J.; Bates C. M. Light-mediated synthesis and reprocessing of dynamic bottlebrush elastomers under ambient conditions. J. Am. Chem. Soc., 2021, 143(26), 9866-9871. doi:10.1021/jacs.1c03686http://dx.doi.org/10.1021/jacs.1c03686
Barcan G. A.; Zhang X. Y.; Waymouth R. M. Structurally dynamic hydrogels derived from 1,2-dithiolanes. J. Am. Chem. Soc., 2015, 137(17), 5650-5653. doi:10.1021/jacs.5b02161http://dx.doi.org/10.1021/jacs.5b02161
Scheutz G. M.; Rowell J. L.; Ellison S. T.; Garrison J. B.; Angelini T. E.; Sumerlin B. S. Harnessing strained disulfides for photocurable adaptable hydrogels. Macromolecules, 2020, 53(10), 4038-4046. doi:10.1021/acs.macromol.0c00604http://dx.doi.org/10.1021/acs.macromol.0c00604
Huang S.; Shen Y. K.; Bisoyi H. K.; Tao Y.; Liu Z. C.; Wang M.; Yang H.; Li Q. Covalent adaptable liquid crystal networks enabled by reversible ring-opening cascades of cyclic disulfides. J. Am. Chem. Soc., 2021, 143(32), 12543-12551. doi:10.1021/jacs.1c03661http://dx.doi.org/10.1021/jacs.1c03661
Chen H.; Liu T.; Zhou P.; Li S.; Ren J.; He H. C.; Wang J. S.; Wang N.; Guo S. J. Efficient bifacial passivation with crosslinked thioctic acid for high-performance methylammonium lead iodide perovskite solar cells. Adv. Mater., 2020, 32(6), e1905661. doi:10.1002/adma.201905661http://dx.doi.org/10.1002/adma.201905661
Chen J. Y.; Guo D. W.; Liang S. H.; Liu Z. Z. A supramolecular copolymer based on small molecules, used for a multifunctional adhesive and rapid hemostasis. Polym. Chem., 2020, 11(41), 6670-6680. doi:10.1039/d0py00926ahttp://dx.doi.org/10.1039/d0py00926a
Chen J. Y.; Yuan T.; Liu Z. Z. Supramolecular medical antibacterial tissue adhesive prepared based on natural small molecules. Biomater. Sci., 2020, 8(22), 6235-6245. doi:10.1039/d0bm01101khttp://dx.doi.org/10.1039/d0bm01101k
Bang E. K.; Gasparini G.; Molinard G.; Roux A.; Sakai N. M.; Matile S. Substrate-initiated synthesis of cell-penetrating poly(disulfide)s. J. Am. Chem. Soc., 2013, 135(6), 2088-2091. doi:10.1021/ja311961khttp://dx.doi.org/10.1021/ja311961k
Lu J. H.; Wang H.; Tian Z. Y.; Hou Y. Q.; Lu H. Cryopolymerization of 1,2-dithiolanes for the facile and reversible grafting-from synthesis of protein-polydisulfide conjugates. J. Am. Chem. Soc., 2020, 142(3), 1217-1221. doi:10.1021/jacs.9b12937http://dx.doi.org/10.1021/jacs.9b12937
Zhang Q.; Qu D. H.; Feringa B. L.; Tian H. Disulfide-mediated reversible polymerization toward intrinsically dynamic smart materials. J. Am. Chem. Soc., 2022, 144(5), 2022-2033. doi:10.1021/jacs.1c10359http://dx.doi.org/10.1021/jacs.1c10359
Bang E. K.; Lista M.; Sforazzini G.; Sakai N. M.; Matile S. Poly(disulfide)s. Chem. Sci., 2012, 3(6), 1752-1763. doi:10.1039/c2sc20098hhttp://dx.doi.org/10.1039/c2sc20098h
Zhang S. Y.; Zhao Y. Controlled release from cleavable polymerized liposomes upon redox and pH stimulation. Bioconjug. Chem., 2011, 22(4), 523-528. doi:10.1021/bc1003197http://dx.doi.org/10.1021/bc1003197
Zhang Q.; Deng Y. X.; Shi C. Y.; Feringa B. L.; Tian H.; Qu D. H. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides). Matter, 2021, 4(4), 1352-1364. doi:10.1016/j.matt.2021.01.014http://dx.doi.org/10.1016/j.matt.2021.01.014
Shi C. Y.; Zhang Q.; Wang B. S.; Chen M.; Qu D. H. Intrinsically photopolymerizable dynamic polymers derived from a natural small molecule. ACS Appl. Mater. Interfaces, 2021, 13(37), 44860-44867. doi:10.1021/acsami.1c11679http://dx.doi.org/10.1021/acsami.1c11679
Kandemir D.; Luleburgaz S.; Gunay U. S.; Durmaz H.; Kumbaraci V. Ultrafast poly(disulfide) synthesis in the presence of organocatalysts. Macromolecules, 2022, 55(17), 7806-7816. doi:10.1021/acs.macromol.2c01228http://dx.doi.org/10.1021/acs.macromol.2c01228
Sun K. H.; Sohn Y. S.; Jeong B. Thermogelling poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) disulfide multiblock copolymer as a thiol-sensitive degradable polymer. Biomacromolecules, 2006, 7(10), 2871-2877. doi:10.1021/bm060512rhttp://dx.doi.org/10.1021/bm060512r
Phillips D. J.; Gibson M. I. Biodegradable poly(disulfide)s derived from RAFT polymerization: monomer scope, glutathione degradation, and tunable thermal responses. Biomacromolecules, 2012, 13(10), 3200-3208. doi:10.1021/bm300989shttp://dx.doi.org/10.1021/bm300989s
Ganesh K.; Kishore K. Chemical degradation of poly(styrene disulfide) and poly(styrene tetrasulfide) by triphenylphosphine. Macromolecules, 1995, 28(7), 2483-2490. doi:10.1021/ma00111a049http://dx.doi.org/10.1021/ma00111a049
Chandrasiri J. A.; Wilkie C. A. Thermal degradation of diphenyl disulfide and a blend of diphenyl disulfide with poly(methyl methacrylate). Polym. Degrad. Stab., 1994, 46(2), 275-284. doi:10.1016/0141-3910(94)90062-0http://dx.doi.org/10.1016/0141-3910(94)90062-0
Kishore K.; Ganesh K. Synthesis, characterization, and thermal degradation studies on group via derived weak-link polymers. Macromolecules, 1993, 26(17), 4700-4705. doi:10.1021/ma00069a044http://dx.doi.org/10.1021/ma00069a044
Fairbanks B. D.; Singh S. P.; Bowman C. N.; Anseth K. S. Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction. Macromolecules, 2011, 44(8), 2444-2450. doi:10.1021/ma200202whttp://dx.doi.org/10.1021/ma200202w
Nevejans S.; Ballard N.; Miranda J. I.; Reck B.; Asua J. M. The underlying mechanisms for self-healing of poly(disulfide)s. Phys. Chem. Chem. Phys., 2016, 18(39), 27577-27583. doi:10.1039/c6cp04028dhttp://dx.doi.org/10.1039/c6cp04028d
Klepel F.; Ravoo B. J. Dynamic covalent chemistry in aqueous solution by photoinduced radical disulfide metathesis. Org. Biomol. Chem., 2017, 15(18), 3840-3842. doi:10.1039/c7ob00667ehttp://dx.doi.org/10.1039/c7ob00667e
Chen J. T.; Jiang S. L.; Gao Y. J.; Sun F. Reducing volumetric shrinkage of photopolymerizable materials using reversible disulfide-bond reactions. J. Mater. Sci., 2018, 53(23), 16169-16181. doi:10.1007/s10853-018-2778-2http://dx.doi.org/10.1007/s10853-018-2778-2
Chao J. Y.; Yue T. J.; Ren B. H.; Gu G. G.; Lu X. B.; Ren W. M. Controlled disassembly of elemental sulfur: an approach to the precise synthesis of polydisulfides. Angew. Chem. Int. Ed., 2022, 61(16), e202115950. doi:10.1002/anie.202115950http://dx.doi.org/10.1002/anie.202115950
夏嘉豪, 谭以正, 许华平. 含硒动态共价高分子. 高分子学报, 2020, 51(11), 1190-1200. doi:10.11777/j.issn1000-3304.2019.19166http://dx.doi.org/10.11777/j.issn1000-3304.2019.19166
0
Views
63
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution