浏览全部资源
扫码关注微信
华中科技大学化学与化工学院 能量转换与存储材料化学教育部重点实验室 材料化学与服役失效湖北省重点实验室 武汉 430074
Published:20 June 2023,
Published Online:01 March 2023,
Received:30 December 2022,
Accepted:19 January 2023
扫 描 看 全 文
扈登文,张梦梦,许江平等.嵌段共聚物微球结构设计与功能调控[J].高分子学报,2023,54(06):818-836.
Hu Deng-wen,Zhang Meng-meng,Xu Jiang-ping,et al.Structure Design and Function Regulation for Block Polymer Microparticles[J].ACTA POLYMERICA SINICA,2023,54(06):818-836.
扈登文,张梦梦,许江平等.嵌段共聚物微球结构设计与功能调控[J].高分子学报,2023,54(06):818-836. DOI: 10.11777/j.issn1000-3304.2022.22455.
Hu Deng-wen,Zhang Meng-meng,Xu Jiang-ping,et al.Structure Design and Function Regulation for Block Polymer Microparticles[J].ACTA POLYMERICA SINICA,2023,54(06):818-836. DOI: 10.11777/j.issn1000-3304.2022.22455.
嵌段共聚物自组装是制备结构可控的聚合物微球的重要途径之一. 聚合物微球的性能与其形状、表面结构和内部结构密切相关. 因此,发展微球有序结构调控方法,实现特定形状与结构的微球的制备,对聚合物微球的发展具有重要意义. 空间约束效应可以减少嵌段共聚物体系的亚稳态数量和组装材料的结构缺陷. 因此,嵌段共聚物在受限条件下的自组装是获得尺寸均一、结构规整聚合物微球材料的有效手段之一. 本专论从嵌段共聚物微球的结构设计出发,总结了近年来通过三维受限组装制备聚合物微球的研究进展,重点介绍了微球表面形貌及内部结构的调控方法与机制. 结合微球在功能载体、光学材料等方面的应用,深入分析了高分子微球结构对其性能的影响规律. 最后,指出了该领域未来发展所面临的关键问题和重要挑战.
Self-assembly of block copolymers (BCPs) into microparticles has gained growing interest due to their various applications
which are dependent on the morphology of microparticles. Therefore
it is of great significance for the regulation of ordered structure of microspheres. The constraint effects exerted by the boundary of a confining space can reduce the number of metastable states of BCPs
leading to the formation of uniform and defect-free structures. Thus
the three-dimensional (3D) confined assembly of BCPs has been employed as a powerful approach to preparing BCP microparticles with controllable morphology. In this feature article
the progress in the preparation of polymeric microparticles through 3D confined self-assembly of BCPs was comprehensively reviewed. The strategies and mechanism for regulating the shape
topology
and internal structure of BCP microspheres were summarized. Moreover
the effects of microparticle morphology on their performance in functional carriers and optical materials were analyzed in depth. Finally
the key scientific problems and challenges in this field were discussed.
嵌段共聚物受限组装聚合物微球结构设计功能调控
Block copolymersConfined assemblyPolymeric microparticlesStructure controlFunction regulation
Staudinger, H. Ber. Dtsch. Chem. Ges. A/B, 1920, 53(6), 1073-1085.
Wang X. Y.; Cao Y. Y.; Yan H. S. Chlorambucil loaded in mesoporous polymeric microspheres as oral sustained release formulations with enhanced hydrolytic stability. Mater. Sci. Eng. C, 2018, 91, 564-569. doi:10.1016/j.msec.2018.05.078http://dx.doi.org/10.1016/j.msec.2018.05.078
Han J.; Wang L.; Wang L.; Li C. M.; Mao Y. L.; Wang Y. Fabrication of a core-shell-shell magnetic polymeric microsphere with excellent performance for separation and purification of bromelain. Food Chem., 2019, 283, 1-10. doi:10.1016/j.foodchem.2019.01.016http://dx.doi.org/10.1016/j.foodchem.2019.01.016
Podkościelna B.; Klimek K.; Karczmarzyk Z.; Wysocki W.; Brodacka M.; Serafin K.; Kozyra P.; Kowalczuk D.; Ginalska G.; Pitucha M. Polymer microspheres modified with pyrazole derivatives as potential agents in anticancer therapy―Preliminary studies. Bioorg. Chem., 2022, 123, 105765. doi:10.1016/j.bioorg.2022.105765http://dx.doi.org/10.1016/j.bioorg.2022.105765
Yu L. L.; Dai X. C.; Zhang Y. X.; Zeng Z. H.; Zhang L.; Tan J. B. Better RAFT control is better? Insights into the preparation of monodisperse surface-functional polymeric microspheres by photoinitiated RAFT dispersion polymerization. Macromolecules, 2019, 52(19), 7267-7277. doi:10.1021/acs.macromol.9b01295http://dx.doi.org/10.1021/acs.macromol.9b01295
Chen W. L.; Palazzo A.; Hennink W. E.; Kok R. J. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol. Pharm., 2017, 14(2), 459-467. doi:10.1021/acs.molpharmaceut.6b00896http://dx.doi.org/10.1021/acs.molpharmaceut.6b00896
Venkataraman S.; Hedrick J. L.; Ong Z. Y.; Yang C.; Ee P. L. R.; Hammond P. T.; Yang Y. Y. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev., 2011, 63(14-15), 1228-1246. doi:10.1016/j.addr.2011.06.016http://dx.doi.org/10.1016/j.addr.2011.06.016
Howes P. D.; Chandrawati R.; Stevens M. M. Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346(6205), 1247390. doi:10.1126/science.1247390http://dx.doi.org/10.1126/science.1247390
Quesada-González D.; Merkoçi A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev., 2018, 47(13), 4697-4709. doi:10.1039/c7cs00837fhttp://dx.doi.org/10.1039/c7cs00837f
Herd H.; Daum N.; Jones A. T.; Huwer H.; Ghandehari H.; Lehr C. M. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano, 2013, 7(3), 1961-1973. doi:10.1021/nn304439fhttp://dx.doi.org/10.1021/nn304439f
Shezad K.; Zhang K. J.; Hussain M.; Dong H.; He C. X.; Gong X. J.; Xie X. L.; Zhu J. T.; Shen L. Surface roughness modulates diffusion and fibrillation of amyloid-β peptide. Langmuir, 2016, 32(32), 8238-8244. doi:10.1021/acs.langmuir.6b01756http://dx.doi.org/10.1021/acs.langmuir.6b01756
Hu X. L.; Hu J. M.; Tian J.; Ge Z. S.; Zhang G. Y.; Luo K. F.; Liu S. Y. Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery. J. Am. Chem. Soc., 2013, 135(46), 17617-17629. doi:10.1021/ja409686xhttp://dx.doi.org/10.1021/ja409686x
Yamauchi A.; Shirai A.; Kawabe K.; Iwamoto T.; Wakiya T.; Nishiyama H.; Inagi S.; Tomita I. Well-defined polymer microspheres formed by living dispersion polymerization: precisely functionalized crosslinked polymer microspheres from monomers possessing cumulated double bonds. NPG Asia Mater., 2016, 8(9), e307. doi:10.1038/am.2016.123http://dx.doi.org/10.1038/am.2016.123
Bicak T. C.; Cormack P. A. G.; Walker C. Synthesis of uniform polymer microspheres with “living” character using ppm levels of copper catalyst: ARGET atom transfer radical precipitation polymerisation. React. Funct. Polym., 2021, 163, 104891. doi:10.1016/j.reactfunctpolym.2021.104891http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104891
Li Z. F.; Wei X. L.; Ngai T. Controlled production of polymer microspheres from microgel-stabilized high internal phase emulsions. Chem. Commun. (Camb), 2011, 47(1), 331-333. doi:10.1039/c0cc02106ghttp://dx.doi.org/10.1039/c0cc02106g
Mai Y. Y.; Eisenberg A. Self-assembly of block copolymers. Chem. Soc. Rev., 2012, 41(18), 5969-5985. doi:10.1039/c2cs35115chttp://dx.doi.org/10.1039/c2cs35115c
Kim J. K.; Yang S. Y.; Lee Y.; Kim Y. Functional nanomaterials based on block copolymer self-assembly. Prog. Polym. Sci., 2010, 35(11), 1325-1349. doi:10.1016/j.progpolymsci.2010.06.002http://dx.doi.org/10.1016/j.progpolymsci.2010.06.002
刘世勇. 大分子自组装新编. 北京: 科学出版社, 2018.
Zhou X. T.; Li L. X.; Qin H.; Ning B.; Li J. P.; Kan C. Y. Controlled self-assembly into diverse stimuli-responsive microstructures: from microspheres to branched cylindrical micelles and vesicles. RSC Adv., 2018, 8(38), 21613-21620. doi:10.1039/c8ra03374ahttp://dx.doi.org/10.1039/c8ra03374a
Wang R. Y.; Park M. J. Self-assembly of block copolymers with tailored functionality: from the perspective of intermolecular interactions. Annu. Rev. Mater. Res., 2020, 50, 521-549. doi:10.1146/annurev-matsci-081519-020046http://dx.doi.org/10.1146/annurev-matsci-081519-020046
Mokarian-Tabari P.; Collins T. W.; Holmes J. D.; Morris M. A. Cyclical “flipping” of morphology in block copolymer thin films. ACS Nano, 2011, 5(6), 4617-4623. doi:10.1021/nn2003629http://dx.doi.org/10.1021/nn2003629
Ku K. H.; Shin J. M.; Yun H.; Yi G. R.; Jang S. G.; Kim B. J. Multidimensional design of anisotropic polymer particles from solvent-evaporative emulsion. Adv. Funct. Mater., 2018, 28(42), 1802961. doi:10.1002/adfm.201802961http://dx.doi.org/10.1002/adfm.201802961
Xu J. P.; Zhu J. T. Block copolymer colloidal particles with unique structures through three-dimensional confined assembly and disassembly. Chinese J. Polym. Sci., 2019, 37(8), 744-759. doi:10.1007/s10118-019-2294-0http://dx.doi.org/10.1007/s10118-019-2294-0
Shin J. J.; Kim E. J.; Ku K. H.; Lee Y. J.; Hawker C. J.; Kim B. J. Block copolymer particles: tuning shape, interfaces, and morphology. ACS Macro Lett., 2020, 9(3), 306-317. doi:10.1021/acsmacrolett.0c00020http://dx.doi.org/10.1021/acsmacrolett.0c00020
张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装. 化学进展, 2018, 30(S1), 166-178.
张连斌, 王珂, 朱锦涛. 中国嵌段共聚物受限自组装的研究进展. 高分子学报, 2017, (8), 1261-1276. doi:10.11777/j.issn1000-3304.2017.17126http://dx.doi.org/10.11777/j.issn1000-3304.2017.17126
Yang S. M.; Kim S. H.; Lim J. M.; Yi G. R. Synthesis and assembly of structured colloidal particles. J. Mater. Chem., 2008, 18(19), 2177. doi:10.1039/b716393bhttp://dx.doi.org/10.1039/b716393b
Chen T.; Zhang Z. L.; Glotzer S. C. A precise packing sequence for self-assembled convex structures. Proc. Natl. Acad. Sci. U. S. A., 2007, 104(3), 717-722. doi:10.1073/pnas.0604239104http://dx.doi.org/10.1073/pnas.0604239104
Han Y.; Alsayed A. M.; Nobili M.; Zhang J.; Lubensky T. C.; Yodh A. G. Brownian motion of an ellipsoid. Science, 2006, 314(5799), 626-630. doi:10.1126/science.1130146http://dx.doi.org/10.1126/science.1130146
Deng R. H.; Liang F. X.; Li W. K.; Yang Z. Z.; Zhu J. T. Reversible transformation of nanostructured polymer particles. Macromolecules, 2013, 46(17), 7012-7017. doi:10.1021/ma401398hhttp://dx.doi.org/10.1021/ma401398h
Jeon S. J.; Yi G. R.; Yang S. M. Cooperative assembly of block copolymers with deformable interfaces: toward nanostructured particles. Adv. Mater., 2008, 20(21), 4103-4108. doi:10.1002/adma.200801377http://dx.doi.org/10.1002/adma.200801377
Hu D. W.; Chang X. H.; Xu Y. Q.; Yu Q. L.; Zhu Y. T. Light-enabled reversible shape transformation of block copolymer particles. ACS Macro Lett., 2021, 10(7), 914-920. doi:10.1021/acsmacrolett.1c00356http://dx.doi.org/10.1021/acsmacrolett.1c00356
Xu J. P.; Wang K.; Li J. Y.; Zhou H. M.; Xie X. L.; Zhu J. T. ABC triblock copolymer particles with tunable shape and internal structure through 3D confined assembly. Macromolecules, 2015, 48(8), 2628-2636. doi:10.1021/acs.macromol.5b00335http://dx.doi.org/10.1021/acs.macromol.5b00335
Klinger D.; Wang C. X.; Connal L. A.; Audus D. J.; Jang S. G.; Kraemer S.; Killops K. L.; Fredrickson G. H.; Kramer E. J.; Hawker C. J.A facile synthesis of dynamic, shape-changing polymer particles. Angew. Chem. Int. Ed., 2014, 53(27), 7018-7022. doi:10.1002/anie.201400183http://dx.doi.org/10.1002/anie.201400183
Yabu H.; Higuchi T.; Jinnai H. Frustrated phases: Polymeric self-assemblies in a 3D confinement. Soft Matter, 2014, 10(17), 2919-2931. doi:10.1039/c3sm52821ahttp://dx.doi.org/10.1039/c3sm52821a
Jeon S. J.; Yi G. R.; Koo C. M.; Yang S. M. Nanostructures inside colloidal particles of block copolymer/homopolymer blends. Macromolecules, 2007, 40(23), 8430-8439. doi:10.1021/ma0712302http://dx.doi.org/10.1021/ma0712302
Deng R. H.; Li H.; Liang F. X.; Zhu J. T.; Li B. H.; Xie X. L.; Yang Z. Z. Soft colloidal molecules with tunable geometry by 3D confined assembly of block copolymers. Macromolecules, 2015, 48(16), 5855-5860. doi:10.1021/acs.macromol.5b01261http://dx.doi.org/10.1021/acs.macromol.5b01261
Ku K. H.; Kim Y.; Yi G. R.; Jung Y. S.; Kim B. J. Soft patchy particles of block copolymers from interface-engineered emulsions. ACS Nano, 2015, 9(11), 11333-11341. doi:10.1021/acsnano.5b05058http://dx.doi.org/10.1021/acsnano.5b05058
Ren M.; Geng Z.; Wang K.; Yang Y.; Tan Z. P.; Xu J. P.; Zhang L. B.; Zhang L. X.; Zhu J. T. Shape-anisotropic diblock copolymer particles with varied internal structures. Langmuir, 2019, 35(9), 3461-3469. doi:10.1021/acs.langmuir.8b04147http://dx.doi.org/10.1021/acs.langmuir.8b04147
Ku K. H.; Shin J. M.; Klinger D.; Jang S. G.; Hayward R. C.; Hawker C. J.; Kim B. J. Particles with tunable porosity and morphology by controlling interfacial instability in block copolymer emulsions. ACS Nano, 2016, 10(5), 5243-5251. doi:10.1021/acsnano.6b00985http://dx.doi.org/10.1021/acsnano.6b00985
Yu Q. L.; Sun N.; Hu D. W.; Wang Y. P.; Chang X. H.; Yan N.; Zhu Y. T.; Li Y. J. Encapsulation of inorganic nanoparticles in a block copolymer vesicle wall driven by the interfacial instability of emulsion droplets. Polym. Chem., 2021, 12(29), 4184-4192. doi:10.1039/d1py00744khttp://dx.doi.org/10.1039/d1py00744k
Zhu J. T.; Hayward R. C. Hierarchically structured microparticles formed by interfacial instabilities of emulsion droplets containing amphiphilic block copolymers. Angew. Chem. Int. Ed., 2008, 47(11), 2113-2116. doi:10.1002/anie.200704863http://dx.doi.org/10.1002/anie.200704863
Zhu J. T.; Ferrer N.; Hayward R. C.Tuning the assembly of amphiphilic block copolymers through instabilities of solvent/water interfaces in the presence of aqueous surfactants. Soft Matter, 2009, 5(12), 2471-2478. doi:10.1039/b818065bhttp://dx.doi.org/10.1039/b818065b
Wang Z.; Cao Y. Y.; Zhang X. Y.; Wang D. G.; Liu M.; Xie Z. G.; Wang Y. P. Rapid self-assembly of block copolymers for flower-like particles with high throughput. Langmuir, 2016, 32(50), 13517-13524. doi:10.1021/acs.langmuir.6b03940http://dx.doi.org/10.1021/acs.langmuir.6b03940
Reisch A.; Klymchenko A. S. Fluorescent polymer nanoparticles based on dyes: Seeking brighter tools for bioimaging. Small, 2016, 12(15), 1968-1992. doi:10.1002/smll.201503396http://dx.doi.org/10.1002/smll.201503396
Otsuka H.; Nagasaki Y.; Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev., 2012, 64, 246-255. doi:10.1016/j.addr.2012.09.022http://dx.doi.org/10.1016/j.addr.2012.09.022
Shin J. J. Effect of site-specific functionalization on the shape of nonspherical block copolymer particles. Polymers, 2020, 12(12), 2804. doi:10.3390/polym12122804http://dx.doi.org/10.3390/polym12122804
Hu D. W.; Wang Y. P.; Liu J. T.; Mao Y. Y.; Chang X. H.; Zhu Y. T. Light-driven sequential shape transformation of block copolymer particles through three-dimensional confined self-assembly. Nanoscale, 2022, 14(17), 6291-6298. doi:10.1039/d2nr01172ghttp://dx.doi.org/10.1039/d2nr01172g
Xu J. P.; Yang Y.; Wang K.; Li J. Y.; Zhou H. M.; Xie X. L.; Zhu J. T. Additives induced structural transformation of ABC triblock copolymer particles. Langmuir, 2015, 31(40), 10975-10982. doi:10.1021/acs.langmuir.5b02843http://dx.doi.org/10.1021/acs.langmuir.5b02843
Xu J. P.; Yang Y.; Wang K.; Wu Y. Q.; Zhu J. T. Fabrication of convex lens-shaped polymer particles by tuning the interfacial interaction. Mater. Chem. Front., 2017, 1(3), 507-511. doi:10.1039/c6qm00072jhttp://dx.doi.org/10.1039/c6qm00072j
Navarro L.; Thünemann A. F.; Yokosawa T.; Spiecker E.; Klinger D. Regioselective seeded polymerization in block copolymer nanoparticles: post-assembly control of colloidal features. Angew. Chem. Int. Ed., 2022, 61(35) , e202208084. doi:10.1002/anie.202208084http://dx.doi.org/10.1002/anie.202208084
Wu Y. Q.; Tan H. Y.; Yang Y.; Li Y. C.; Xu J. P.; Zhang L. X.; Zhu J. T. Regulating block copolymer assembly structures in emulsion droplets through metal ion coordination. Langmuir, 2018, 34(38), 11495-11502. doi:10.1021/acs.langmuir.8b02135http://dx.doi.org/10.1021/acs.langmuir.8b02135
Wu Y. Q.; Wang K.; Tan H. Y.; Xu J. P.; Zhu J. T. Emulsion solvent evaporation-induced self-assembly of block copolymers containing pH-sensitive block. Langmuir, 2017, 33(38), 9889-9896. doi:10.1021/acs.langmuir.7b02330http://dx.doi.org/10.1021/acs.langmuir.7b02330
He Y.; Zhang Y.; Yan N.; Zhu Y. T.; Jiang W.; Shi D. A. Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles. Nanoscale, 2017, 9(39), 15056-15061. doi:10.1039/c7nr04923dhttp://dx.doi.org/10.1039/c7nr04923d
Jin Z. X.; Fan H. L. Self-assembly of nanostructured block copolymer nanoparticles. Soft Matter, 2014, 10(46), 9212-9219. doi:10.1039/c4sm02064bhttp://dx.doi.org/10.1039/c4sm02064b
Jang S. G.; Audus D. J.; Klinger D.; Krogstad D. V.; Kim B. J.; Cameron A.; Kim S. W.; Delaney K. T.; Hur S. M.; Killops K. L.; Fredrickson G. H.; Kramer E. J.; Hawker C. J. Striped, ellipsoidal particles by controlled assembly of diblock copolymers. J. Am. Chem. Soc., 2013, 135(17), 6649-6657. doi:10.1021/ja4019447http://dx.doi.org/10.1021/ja4019447
Hou Z. Y.; Ren M.; Wang K.; Yang Y.; Xu J. P.; Zhu J. T. Deformable block copolymer microparticles by controllable localization of pH-responsive nanoparticles. Macromolecules, 2020, 53(1), 473-481. doi:10.1021/acs.macromol.9b01936http://dx.doi.org/10.1021/acs.macromol.9b01936
Zhang M. M.; Hou Z. Y.; Wang H. Y.; Zhang L. B.; Xu J. P.; Zhu J. T. Shaping block copolymer microparticles by pH-responsive core-cross-linked polymeric nanoparticles. Langmuir, 2021, 37(1), 454-460. doi:10.1021/acs.langmuir.0c03099http://dx.doi.org/10.1021/acs.langmuir.0c03099
Bates F. S.; Fredrickson G. H. Block copolymers—designer soft materials. Phys. Today, 1999, 52(2), 32-38. doi:10.1063/1.882522http://dx.doi.org/10.1063/1.882522
Bates F. S.; Fredrickson G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem., 1990, 41, 525-557. doi:10.1146/annurev.pc.41.100190.002521http://dx.doi.org/10.1146/annurev.pc.41.100190.002521
Grason G. M. The packing of soft materials: Molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts. Phys. Rep., 2006, 433(1), 1-64. doi:10.1016/j.physrep.2006.08.001http://dx.doi.org/10.1016/j.physrep.2006.08.001
Matsen M. W. Thin films of block copolymer. J. Chem. Phys., 1997, 106(18), 7781-7791. doi:10.1063/1.473778http://dx.doi.org/10.1063/1.473778
Ren M.; Hou Z. Y.; Zheng X. H.; Xu J. P.; Zhu J. T. Electrostatic control of the three-dimensional confined assembly of charged block copolymers in emulsion droplets. Macromolecules, 2021, 54(12), 5728-5736. doi:10.1021/acs.macromol.1c00575http://dx.doi.org/10.1021/acs.macromol.1c00575
Li H.; Mao X.; Wang H. Y.; Geng Z.; Xiong B. J.; Zhang L. B.; Liu S. M.; Xu J. P.; Zhu J. T. Kinetically dependent self-assembly of chiral block copolymers under 3D confinement. Macromolecules, 2020, 53(11), 4214-4223. doi:10.1021/acs.macromol.0c00406http://dx.doi.org/10.1021/acs.macromol.0c00406
Katou H.; Wandrey A. J.; Gander B. Kinetics of solvent extraction/evaporation process for PLGA microparticle fabrication. Int. J. Pharm., 2008, 364(1), 45-53. doi:10.1016/j.ijpharm.2008.08.015http://dx.doi.org/10.1016/j.ijpharm.2008.08.015
Vrentas J. S.; Duda J. L. Diffusion in polymer—solvent systems. I. Reexamination of the free-volume theory. J. Polym. Sci. Polym. Phys. Ed., 1977, 15(3), 403-416. doi:10.1002/pol.1977.180150302http://dx.doi.org/10.1002/pol.1977.180150302
Xu P. F.; Gao L.; Cai C. H.; Lin J. P.; Wang L. Q.; Tian X. H. Helical toroids self-assembled from a binary system of polypeptide homopolymer and its block copolymer. Angew. Chem. Int. Ed., 2020, 59(34), 14281-14285. doi:10.1002/anie.202004102http://dx.doi.org/10.1002/anie.202004102
Lu X. M.; Li J. M.; Zhu D. D.; Xu M.; Li W. H.; Lu Q. H. Double-helical nanostructures with controllable handedness in bulk diblock copolymers. Angew. Chem. Int. Ed., 2018, 57(46), 15148-15152. doi:10.1002/anie.201809676http://dx.doi.org/10.1002/anie.201809676
Li H.; Xiong B. J.; Geng Z.; Wang H. Y.; Gao Y. T.; Gu P.; Xie H. Y.; Xu J. P.; Zhu J. T. Temperature- and solvent-mediated confined assembly of semicrystalline chiral block copolymers in evaporative emulsion droplets. Macromolecules, 2021, 54(23), 10712-10722. doi:10.1021/acs.macromol.1c01485http://dx.doi.org/10.1021/acs.macromol.1c01485
Lv C. F.; Liao X.; Zou F. F.; Tang W. Y.; Xing S. W.; Li G. X. Generating porous polymer microspheres with cellular surface via a gas-diffusion confined scCO2 foaming technology to endow the super-hydrophobic coating with hierarchical roughness. Chem. Eng. J., 2022, 442, 136192. doi:10.1016/j.cej.2022.136192http://dx.doi.org/10.1016/j.cej.2022.136192
Qiao M.; Wang M. M.; Chen M. L.; Wang J. H. A novel porous polymeric microsphere for the selective adsorption and isolation of conalbumin. Anal. Chim. Acta, 2021, 1148, 238176. doi:10.1016/j.aca.2020.12.051http://dx.doi.org/10.1016/j.aca.2020.12.051
Xiang L. X.; Li Q.; Li C.; Yang Q. Q.; Xu F. G.; Mai Y. Y. Block copolymer self-assembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications. Adv. Mater., 2022, 2207684. doi:10.1002/adma.202207684http://dx.doi.org/10.1002/adma.202207684
Xiang L. X.; Yuan S. Q.; Wang F. X.; Xu Z. H.; Li X. H.; Tian F.; Wu L.; Yu W.; Mai Y. Y. Porous polymer cubosomes with ordered single primitive bicontinuous architecture and their sodium-iodine batteries. J. Am. Chem. Soc., 2022, 144(34), 15497-15508. doi:10.1021/jacs.2c02881http://dx.doi.org/10.1021/jacs.2c02881
Guo B. B.; Li C.; Wu H. R.; Chen J. H.; Wang J. L.; Wei H.; Mai Y. Y. Controlled synthesis of porous carbon nanostructures with tunable closed mesopores via a silica-assisted coassembly strategy. CCS Chem., 2021, 3(5), 1410-1422. doi:10.31635/ccschem.020.202000400http://dx.doi.org/10.31635/ccschem.020.202000400
Liu Q. J.; Li Y. L.; Xu J. C.; Lu H. F.; Li Y. S.; Song D. P. Self-assembled photonic microsensors with strong aggregation-induced emission for ultra-trace quantitative detection. ACS Nano, 2021, 15(3), 5534-5544. doi:10.1021/acsnano.1c00361http://dx.doi.org/10.1021/acsnano.1c00361
Deng R. H.; Liu S. Q.; Li J. Y.; Liao Y. G.; Tao J.; Zhu J. T. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater., 2012, 24(14), 1889-1893. doi:10.1002/adma.201200102http://dx.doi.org/10.1002/adma.201200102
Xu J. P.; Li J.; Yang Y.; Wang K.; Xu N.; Li J. Y.; Liang R. J.; Shen L.; Xie X. L.; Tao J.; Zhu J. T. Block copolymer capsules with structure-dependent release behavior. Angew. Chem. Int. Ed., 2016, 55(47), 14633-14637. doi:10.1002/anie.201607982http://dx.doi.org/10.1002/anie.201607982
Gao Y. K.; Yuan Z. Y.; Yuan X. J.; Wan Z.; Yu Y. J.; Zhan Q.; Zhao Y. M.; Han J. M.; Huang J. Y.; Xiong C. Y.; Cai Q. Bioinspired porous microspheres for sustained hypoxic exosomes release and vascularized bone regeneration. Bioact. Mater., 2022, 14, 377-388. doi:10.1016/j.bioactmat.2022.01.041http://dx.doi.org/10.1016/j.bioactmat.2022.01.041
Kim D. H.; Jeong J. H.; Woo H. C.; Kim M. H. Synthesis of highly porous polymer microspheres with interconnected open pores for catalytic microreactors. Chem. Eng. J., 2021, 420, 127628. doi:10.1016/j.cej.2020.127628http://dx.doi.org/10.1016/j.cej.2020.127628
Xiao J. J.; Qiu Z. M.; Yang W. R.; Qiu J. M.; Yang T. L.; Xu Y. D.; Zeng Y. J.; Wang F. C.; Li S. K. Organosilicone modification of allyl methacrylate with speier's catalyst for waterborne self-matting styrene-acrylic emulsion. Prog. Org. Coat., 2018, 116, 1-6. doi:10.1016/j.porgcoat.2017.12.004http://dx.doi.org/10.1016/j.porgcoat.2017.12.004
Hussain M.; Xie J.; Hou Z. Y.; Shezad K.; Xu J. P.; Wang K.; Gao Y. J.; Shen L.; Zhu J. T. Regulation of drug release by tuning surface textures of biodegradable polymer microparticles. ACS Appl. Mater. Interfaces, 2017, 9(16), 14391-14400. doi:10.1021/acsami.7b02002http://dx.doi.org/10.1021/acsami.7b02002
Slowing I.; Trewyn B. G.; Lin V. S. Y. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J. Am. Chem. Soc., 2006, 128(46), 14792-14793. doi:10.1021/ja0645943http://dx.doi.org/10.1021/ja0645943
Hutter E.; Boridy S.; Labrecque S.; Lalancette-Hébert M.; Kriz J.; Winnik F. M.; Maysinger D. Microglial response to gold nanoparticles. ACS Nano, 2010, 4(5), 2595-2606. doi:10.1021/nn901869fhttp://dx.doi.org/10.1021/nn901869f
Hussain M.; Xie J.; Wang K.; Wang H.; Tan Z. P.; Liu Q. Q.; Geng Z.; Shezad K.; Noureen L.; Jiang H.; Xu J. P.; Zhang L. B.; Zhu J. T. Biodegradable polymer microparticles with tunable shapes and surface textures for enhancement of dendritic cell maturation. ACS Appl. Mater. Interfaces, 2019, 11(45), 42734-42743. doi:10.1021/acsami.9b14286http://dx.doi.org/10.1021/acsami.9b14286
Pekarek K. J.; Jacob J. S.; Mathiowitz E. Double-walled polymer microspheres for controlled drug release. Nature, 1994, 367(6460), 258-260. doi:10.1038/367258a0http://dx.doi.org/10.1038/367258a0
Lee J. Y.; Shin K.; Seo H.; Jun H.; Hirai A. N. S.; Lee J. W.; Nam Y. S.; Kim J. W.Tailored layer-by-layer deposition of silica reinforced polyelectrolyte layers on polymer microcapsules for enhanced antioxidant cargo retention. J. Ind. Eng. Chem., 2018, 58, 80-86. doi:10.1016/j.jiec.2017.09.010http://dx.doi.org/10.1016/j.jiec.2017.09.010
Nguyen T.; Peng Y. F.; Seekell R. P.; Kheir J. N.; Polizzotti B. D.Hyperbaric polymer microcapsules for tunable oxygen delivery. J. Control. Release, 2020, 327, 420-428. doi:10.1016/j.jconrel.2020.08.003http://dx.doi.org/10.1016/j.jconrel.2020.08.003
Li Z. F.; Wang Z. H.; Du X. Y.; Shi C.; Cui X. J. Sonochemistry-assembled stimuli-responsive polymer microcapsules for drug delivery. Adv. Healthc. Mater., 2018, 7(11), e1701326. doi:10.1002/adhm.201701326http://dx.doi.org/10.1002/adhm.201701326
Kim J. B.; Kim J. W.; Kim M.; Kim S. H. Dual-colored Janus microspheres with photonic and plasmonic faces. Small, 2022, 18(21), 2201437. doi:10.1002/smll.202201437http://dx.doi.org/10.1002/smll.202201437
Fenzl C.; Hirsch T.; Wolfbeis O. S. Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed., 2014, 53(13), 3318-3335. doi:10.1002/anie.201307828http://dx.doi.org/10.1002/anie.201307828
Matsubara K.; Watanabe M.; Takeoka Y. A thermally adjustable multicolor photochromic hydrogel. Angew. Chem. Int. Ed., 2007, 46(10), 1688-1692. doi:10.1002/anie.200603554http://dx.doi.org/10.1002/anie.200603554
Kubo S.; Gu Z. Z.; Takahashi K.; Ohko Y.; Sato O.; Fujishima A. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition. J. Am. Chem. Soc., 2002, 124(37), 10950-10951. doi:10.1021/ja026482rhttp://dx.doi.org/10.1021/ja026482r
Fenniri H.; Chun S.; Ding L. H.; Zyrianov Y.; Hallenga K. Preparation, physical properties, on-bead binding assay and spectroscopic reliability of 25 barcoded polystyrene-poly(ethylene glycol) graft copolymers. J. Am. Chem. Soc., 2003, 125(35), 10546-10560. doi:10.1021/ja035665qhttp://dx.doi.org/10.1021/ja035665q
Zhao Y. J.; Zhao X. W.; Sun C.; Li J.; Zhu R.; Gu Z. Z. Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal. Chem., 2008, 80(5), 1598-1605. doi:10.1021/ac702249ahttp://dx.doi.org/10.1021/ac702249a
Yang Y.; Kim H.; Xu J. P.; Hwang M. S.; Tian D.; Wang K.; Zhang L. B.; Liao Y. G.; Park H. G.; Yi G. R.; Xie X. L.; Zhu J. T. Responsive block copolymer photonic microspheres. Adv. Mater., 2018, 30(21), e1707344. doi:10.1002/adma.201707344http://dx.doi.org/10.1002/adma.201707344
Kanai T.; Lee D.; Shum H. C.; Shah R. K.; Weitz D. A. Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths. Adv. Mater., 2010, 22(44), 4998-5002. doi:10.1002/adma.201002055http://dx.doi.org/10.1002/adma.201002055
Yang Y.; Chen Y.; Hou Z. Y.; Li F.; Xu M. J.; Liu Y. Y.; Tian D.; Zhang L. B.; Xu J. P.; Zhu J. T. Responsive photonic crystal microcapsules of block copolymers with enhanced monochromaticity. ACS Nano, 2020, 14(11), 16057-16064. doi:10.1021/acsnano.0c07898http://dx.doi.org/10.1021/acsnano.0c07898
0
Views
122
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution