浏览全部资源
扫码关注微信
1.郑州大学河南先进技术研究院 郑州 450003
2.国家纳米科学中心 中国科学院纳米生物效应与安全性重点实验室 北京 100190
Published:20 June 2023,
Published Online:13 March 2023,
Received:30 December 2022,
Accepted:25 January 2023
扫 描 看 全 文
张光叙,乔增莹,王浩.体内自组装多肽纳米材料及其在肿瘤诊疗中的研究进展[J].高分子学报,2023,54(06):976-994.
Zhang Guang-xu,Qiao Zeng-ying,Wang Hao.Research Progress of in vivo Self-assembled Peptide Nanomaterials and Their Application in Tumor Diagnosis and Treatment[J].ACTA POLYMERICA SINICA,2023,54(06):976-994.
张光叙,乔增莹,王浩.体内自组装多肽纳米材料及其在肿瘤诊疗中的研究进展[J].高分子学报,2023,54(06):976-994. DOI: 10.11777/j.issn1000-3304.2022.22456.
Zhang Guang-xu,Qiao Zeng-ying,Wang Hao.Research Progress of in vivo Self-assembled Peptide Nanomaterials and Their Application in Tumor Diagnosis and Treatment[J].ACTA POLYMERICA SINICA,2023,54(06):976-994. DOI: 10.11777/j.issn1000-3304.2022.22456.
多肽纳米药物由于具有易于设计改造、良好的靶向性、生物相容性和较长的血液循环时间等优势,在生物医学与肿瘤诊疗中具有巨大的潜力. 近年来,利用肿瘤微环境原位构建多肽纳米材料的策略已被广泛研究,本文综述了多肽纳米材料通过不同的刺激响应(pH、酶和氧化还原等)实现体内自组装,从而对肿瘤的诊断与治疗产生的积极效果. 重点阐述了不同的刺激响应型自组装多肽纳米材料的设计合成及其在肿瘤诊疗中的应用,如对于药物递送系统中的药物富集、渗透和内吞等过程的增强作用,同时简单介绍了其在生物成像上的应用,最后对体内自组装多肽纳米材料的未来发展进行了展望.
Peptide nanomedicines have great potential in tumor diagnosis and treatment due to their advantages of easy design and modification
good targeting
biocompatibility and long blood circulation time. In recent years
the strategy of constructing peptide nanomaterials
in situ
in the tumor microenvironment has been widely studied
and "
in vivo
self-assembly" has proven to be a promising biotechnology for disease diagnosis and treatment. Construction of
in situ
peptide-based self-assemblies at tumor or infection sites shows assembly/aggregation-induced retention (AIR) effects and enhances the biological function of nanomaterials. Peptide molecules are often driven by hydrogen bonds
van der Waals forces
electrostatic effects
etc.
to form supramolecular structures. The self-assembly behavior is often stimulated by various factors such as light
sound
enzymes
redox
etc.
to form a corresponding assembly structure. The tumor microenvironment is more complex
and researchers have designed a series of peptide nanomaterials that can respond to the special tumor microenvironment
so that the peptide nanomaterials can be assembled at the tumor site to achieve the expected therapeutic effect. The
in vivo
self-assembly strategy of peptide nanomaterials can better improve the ability of drug enrichment at target location
cell uptake of drug and drug penetration. At the same time
it has been found that peptide nanomaterials also have a gratifying effect in non-invasive biological imaging
and that this non-invasive imaging strategy has also been widely used
such as fluorescence imaging
photoacoustic imaging
etc.
Based on the current research work on peptide nanomaterials
this article reviews the effects of
in vivo
self-assembled peptide nanomaterials on the diagnosis and treatment of tumors through different stimuli (pH
enzymes
redox
etc.
)
focusing on the design and synthesis of different stimuli-responsive self-assembled peptide nanomaterials and their applications in tumor diagnosis and treatment
such as the enhancement of drug enrichment
penetration
endocytosis and other processes in drug delivery systems. At the same time
its application in biological imaging is briefly introduced
and finally the future development of self-assembled peptide nanomaterials
in vivo
is prospected.
体内自组装多肽纳米材料刺激响应性药物递送肿瘤诊疗
In vivo self-assemblyPeptide nanomaterialsStimulation responsivenessDrug deliveryTumor diagnosis and treatment
Lam K. S.; Salmon S. E.; Hersh E. M.; Hruby V. J.; Kazmierski W. M.; Knapp R. J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature, 1991, 354(6348), 82-84. doi:10.1038/354082a0http://dx.doi.org/10.1038/354082a0
Qi G. B.; Gao Y. J.; Wang L.; Wang H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater., 2018, 30(22), e1703444. doi:10.1002/adma.201703444http://dx.doi.org/10.1002/adma.201703444
Fosgerau K.; Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128. doi:10.1016/j.drudis.2014.10.003http://dx.doi.org/10.1016/j.drudis.2014.10.003
Chagri S.; Ng D. Y. W.; Weil T. Designing bioresponsive nanomaterials for intracellular self-assembly. Nat. Rev. Chem., 2022, 6(5), 320-338. doi:10.1038/s41570-022-00373-xhttp://dx.doi.org/10.1038/s41570-022-00373-x
Li L. L.; Qiao Z. Y.; Wang L.; Wang H. Programmable construction of peptide-based materials in living subjects: From modular design and morphological control to theranostics. Adv. Mater., 2019, 31(45), e1804971. doi:10.1002/adma.201970321http://dx.doi.org/10.1002/adma.201970321
Franks S. J.; Firipis K.; Ferreira R.; Hannan K. M.; Williams R. J.; Hannan R. D.; Nisbet D. R. Harnessing the self-assembly of peptides for the targeted delivery of anti-cancer agents. Mater. Horiz., 2020, 7(8), 1996-2010. doi:10.1039/d0mh00398khttp://dx.doi.org/10.1039/d0mh00398k
He H. J.; Wang J. Q.; Wang H. M.; Zhou N.; Yang D.; Green D. R.; Xu B. Enzymatic cleavage of branched peptides for targeting mitochondria. J. Am. Chem. Soc., 2018, 140(4), 1215-1218. doi:10.1021/jacs.7b11582http://dx.doi.org/10.1021/jacs.7b11582
Liang C. H.; Yan X. R.; Zhang R. S.; Xu T. Y.; Zheng D. B.; Tan Z. Q.; Chen Y. X.; Gao Z. F.; Wang L.; Li X. Y.; Yang Z. M. Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly. J. Control. Release, 2020, 317, 109-117. doi:10.1016/j.jconrel.2019.11.028http://dx.doi.org/10.1016/j.jconrel.2019.11.028
Zhang J.; Mu Y. L.; Xu M. Q.; Foda M. F.; Han H. Y. Sequential assembled chimeric peptide for precise synergistic phototherapy and photoacoustic imaging of tumor apoptosis. Chem. Eng. J., 2022, 427, 130775. doi:10.1016/j.cej.2021.130775http://dx.doi.org/10.1016/j.cej.2021.130775
Liu Y.; Zhang D.; Qiao Z. Y.; Qi G. B.; Liang X. J.; Chen X. G.; Wang H. A peptide-network weaved nanoplatform with tumor microenvironment responsiveness and deep tissue penetration capability for cancer therapy. Adv. Mater., 2015, 27(34), 5034-5042. doi:10.1002/adma.201501502http://dx.doi.org/10.1002/adma.201501502
Schneider J. P.; Pochan D. J.; Ozbas B.; Rajagopal K.; Pakstis L.; Kretsinger J. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc., 2002, 124(50), 15030-15037. doi:10.1021/ja027993ghttp://dx.doi.org/10.1021/ja027993g
Smith A.; Williams R.; Tang C.; Coppo P.; Collins R.; Turner, M; Saiani, A.; Ulijn, R. Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π-π interlocked β-sheets. Adv. Mater., 2008, 20(1), 37-41. doi:10.1002/adma.200701221http://dx.doi.org/10.1002/adma.200701221
Mahler A.; Reches M.; Rechter M.; Cohen S.; Gazit E. Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv. Mater., 2006, 18(11), 1365-1370. doi:10.1002/adma.200501765http://dx.doi.org/10.1002/adma.200501765
Ma M.; Kuang Y.; Gao Y.; Zhang Y.; Gao P.; Xu B. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J. Am. Chem. Soc., 2010, 132(8), 2719-2728. doi:10.1021/ja9088764http://dx.doi.org/10.1021/ja9088764
Mikhalevich V.; Craciun I.; Kyropoulou M.; Palivan C. G.; Meier W. Amphiphilic peptide self-assembly: expansion to hybrid materials. Biomacromolecules, 2017, 18(11), 3471-3480. doi:10.1021/acs.biomac.7b00764http://dx.doi.org/10.1021/acs.biomac.7b00764
Muraoka T.; Koh C. Y.; Cui H. G.; Stupp S. I. Light-triggered bioactivity in three dimensions. Angew. Chem. Int. Ed. Engl., 2009, 48(32), 5946-5949. doi:10.1002/anie.200901524http://dx.doi.org/10.1002/anie.200901524
Kumita J. R.; Smart O. S.; Woolley G. A. Photo-control of helix content in a short peptide. Proc. Natl. Acad. Sci. U. S. A., 2000, 97(8), 3803-3808. doi:10.1073/pnas.97.8.3803http://dx.doi.org/10.1073/pnas.97.8.3803
Haines L. A.; Rajagopal K.; Ozbas B.; Salick D. A.; Pochan D. J.; Schneider J. P. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J. Am. Chem. Soc., 2005, 127(48), 17025-17029. doi:10.1021/ja054719ohttp://dx.doi.org/10.1021/ja054719o
Cong Y.; Ji L.; Gao Y. J.; Liu F. H.; Cheng D. B.; Hu Z. Y.; Qiao Z. Y.; Wang H. Microenvironment-induced in situ self-assembly of polymer-peptide conjugates that attack solid tumors deeply. Angew. Chem. Int. Ed., 2019, 58(14), 4632-4637. doi:10.1002/anie.201900135http://dx.doi.org/10.1002/anie.201900135
Altman M.; Lee P.; Rich A.; Zhang S. Conformational behavior of ionic self-complementary peptides. Protein Sci., 2000, 9(6), 1095-1105. doi:10.1110/ps.9.6.1095http://dx.doi.org/10.1110/ps.9.6.1095
Zhao Y.; Ren W.; Zhong T.; Zhang S.; Huang D.; Guo Y.; Yao X.; Wang C.; Zhang W. Q.; Zhang X.; Zhang Q. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity. J. Control. Release, 2016, 222, 56-66. doi:10.1016/j.jconrel.2015.12.006http://dx.doi.org/10.1016/j.jconrel.2015.12.006
Zhao B. X.; Zhao Y.; Huang Y.; Luo L. M.; Song P.; Wang X.; Chen S.; Yu K. F.; Zhang X.; Zhang Q. The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. Biomaterials, 2012, 33(8), 2508-2520. doi:10.1016/j.biomaterials.2011.11.078http://dx.doi.org/10.1016/j.biomaterials.2011.11.078
An H. W.; Li L. L.; Wang Y.; Wang Z. Q.; Hou D. Y.; Lin Y. X.; Qiao S. L.; Wang M. D.; Yang C.; Cong Y.; Ma Y.; Zhao X. X.; Cai Q.; Chen W. T.; Lu C. Q.; Xu W. H.; Wang H.; Zhao Y. L. A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging. Nat. Commun., 2019, 10(1), 4861. doi:10.1038/s41467-019-12848-5http://dx.doi.org/10.1038/s41467-019-12848-5
Todd S. J.; Scurr D. J.; Gough J. E.; Alexander M. R.; Ulijn R. V. Enzyme-activated RGD ligands on functionalized poly(ethylene glycol) monolayers: Surface analysis and cellular response. Langmuir, 2009, 25(13), 7533-7539. doi:10.1021/la900376hhttp://dx.doi.org/10.1021/la900376h
Shi H. B.; Kwok R. T. K.; Liu J. Z.; Xing B. G.; Tang B. Z.; Liu B. Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. J. Am. Chem. Soc., 2012, 134(43), 17972-17981. doi:10.1021/ja3064588http://dx.doi.org/10.1021/ja3064588
Dehsorkhi A.; Castelletto V.; Hamley I. W. Self-assembling amphiphilic peptides. J. Pept. Sci., 2014, 20(7), 453-467. doi:10.1002/psc.2633http://dx.doi.org/10.1002/psc.2633
Kruger K.; Hallberg B.; Blennow M.; Kublickas M.; Westgren M. Predictive value of fetal scalp blood lactate concentration and pH as markers of neurologic disability. Am. J. Obstet. Gynecol., 1999, 181(5 Pt 1), 1072-1078. doi:10.1016/s0002-9378(99)70083-9http://dx.doi.org/10.1016/s0002-9378(99)70083-9
Chen J. W.; Chen C. M.; Chang C. C. A fluorescent pH probe for acidic organelles in living cells. Org. Biomol. Chem., 2017, 15(37), 7936-7943. doi:10.1039/c7ob02037fhttp://dx.doi.org/10.1039/c7ob02037f
Hausig F.; Sobotta F. H.; Richter F.; Harz D. O.; Traeger A.; Brendel J. C. Correlation between protonation of tailor-made polypiperazines and endosomal escape for cytosolic protein delivery. ACS Appl. Mater. Interfaces, 2021, 13(30), 35233-35247. doi:10.1021/acsami.1c00829http://dx.doi.org/10.1021/acsami.1c00829
Kanamala M.; Wilson W. R.; Yang M. M.; Palmer B. D.; Wu Z. M. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery. Biomaterials, 2016, 85, 152-167. doi:10.1016/j.biomaterials.2016.01.061http://dx.doi.org/10.1016/j.biomaterials.2016.01.061
Cheng D. B.; Yang P. P.; Cong Y.; Liu F. H.; Qiao Z. Y.; Wang H. One-pot synthesis of pH-responsive hyperbranched polymer-peptide conjugates with enhanced stability and loading efficiency for combined cancer therapy. Polym. Chem., 2017, 8(16), 2462-2471. doi:10.1039/c7py00101khttp://dx.doi.org/10.1039/c7py00101k
Qiao Z. Y.; Zhao W. J.; Gao Y. J.; Cong Y.; Zhao L. N.; Hu Z. Y.; Wang H. Reconfigurable peptide nanotherapeutics at tumor microenvironmental pH. ACS Appl. Mater. Interfaces, 2017, 9(36), 30426-30436. doi:10.1021/acsami.7b09033http://dx.doi.org/10.1021/acsami.7b09033
Elgogary A.; Xu Q. G.; Poore B.; Alt J.; Zimmermann S. C.; Zhao L.; Fu J.; Chen B. W.; Xia S. Y.; Liu Y. F.; Neisser M.; Nguyen C.; Lee R.; Park J. K.; Reyes J.; Hartung T.; Rojas C.; Rais R.; Tsukamoto T.; Semenza G. L.; Hanes J.; Slusher B. S.; Le A. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(36), e5328. doi:10.1073/pnas.1611406113http://dx.doi.org/10.1073/pnas.1611406113
Gao S.; Wang G.; Qin Z.; Wang X.; Zhao G.; Ma Q.; Zhu L. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials, 2017, 112, 324-335. doi:10.1016/j.biomaterials.2016.10.030http://dx.doi.org/10.1016/j.biomaterials.2016.10.030
Cheng D. B.; Zhang X. H.; Chen Y.; Chen H.; Qiao Z. Y.; Wang H. Ultrasound-activated cascade effect for synergistic orthotopic pancreatic cancer therapy. iScience, 2020, 23(6), 101144. doi:10.1016/j.isci.2020.101144http://dx.doi.org/10.1016/j.isci.2020.101144
Xu X. D.; Saw P. E.; Tao W.; Li Y. J.; Ji X. Y.; Bhasin S.; Liu Y. L.; Ayyash D.; Rasmussen J.; Huo M.; Shi J. J.; Farokhzad O. C. ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater., 2017, 29(33), 1700141. doi:10.1002/adma.201700141http://dx.doi.org/10.1002/adma.201700141
Jäger E.; Höcherl A.; Janoušková O.; Jäger A.; Hrubý M.; Konefał R.; Netopilik M.; Pánek J.; Šlouf M.; Ulbrich K.; Štěpánek P. Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications. Nanoscale, 2016, 8(13), 6958-6963. doi:10.1039/c6nr00791khttp://dx.doi.org/10.1039/c6nr00791k
Schumacker P. T. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell, 2006, 10(3), 175-176. doi:10.1016/j.ccr.2006.08.015http://dx.doi.org/10.1016/j.ccr.2006.08.015
Cheng D. B.; Zhang X. H.; Gao Y. J.; Ji L.; Hou D. Y.; Wang Z. Q.; Xu W. H.; Qiao Z. Y.; Wang H. Endogenous reactive oxygen species-triggered morphology transformation for enhanced cooperative interaction with mitochondria. J. Am. Chem. Soc., 2019, 141(18), 7235-7239. doi:10.1021/jacs.8b07727http://dx.doi.org/10.1021/jacs.8b07727
Saleh T.; Kalodimos C. G. Enzymes at work are enzymes in motion. Science, 2017, 355(6322), 247-248. doi:10.1126/science.aal4632http://dx.doi.org/10.1126/science.aal4632
Gao J.; Zhan J.; Yang Z. M. Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides. Adv. Mater., 2020, 32(3), e1805798. doi:10.1002/adma.201805798http://dx.doi.org/10.1002/adma.201805798
He H. J.; Guo J. Q.; Xu B. Enzymatic delivery of magnetic nanoparticles into mitochondria of live cells. ChemNanoMat, 2021, 7(10), 1104-1107. doi:10.1002/cnma.202100249http://dx.doi.org/10.1002/cnma.202100249
Guo R. C.; Zhang X. H.; Fan P. S.; Song B. L.; Li Z. X.; Duan Z. Y.; Qiao Z. Y.; Wang H. In vivo self-assembly induced cell membrane phase separation for improved peptide drug internalization. Angew. Chem. Int. Ed., 2021, 60(47), 25128-25134. doi:10.1002/anie.202111839http://dx.doi.org/10.1002/anie.202111839
Liu F. H.; Cong Y.; Qi G. B.; Ji L.; Qiao Z. Y.; Wang H. Near-infrared laser-driven in situ self-assembly as a general strategy for deep tumor therapy. Nano Lett., 2018, 18(10), 6577-6584. doi:10.1021/acs.nanolett.8b03174http://dx.doi.org/10.1021/acs.nanolett.8b03174
Blanco E.; Shen H. F.; Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951. doi:10.1038/nbt.3330http://dx.doi.org/10.1038/nbt.3330
Zhang Y. Q.; Yu J. C.; Bomba H. N.; Zhu Y.; Gu Z. Mechanical force-triggered drug delivery. Chem. Rev., 2016, 116(19), 12536-12563. doi:10.1021/acs.chemrev.6b00369http://dx.doi.org/10.1021/acs.chemrev.6b00369
Cheng Y. J.; Qin S. Y.; Ma Y. H.; Chen X. S.; Zhang A. Q.; Zhang X. Z. Super-pH-sensitive mesoporous silica nanoparticle-based drug delivery system for effective combination cancer therapy. ACS Biomater. Sci. Eng., 2019, 5(4), 1878-1886. doi:10.1021/acsbiomaterials.9b00099http://dx.doi.org/10.1021/acsbiomaterials.9b00099
Deng W.; Chen W. J.; Clement S.; Guller A.; Zhao Z. J.; Engel A.; Goldys E. M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat. Commun., 2018, 9(1), 2713. doi:10.1038/s41467-018-05118-3http://dx.doi.org/10.1038/s41467-018-05118-3
Dewhirst M. W.; Secomb T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer, 2017, 17(12), 738-750. doi:10.1038/nrc.2017.93http://dx.doi.org/10.1038/nrc.2017.93
Hui Y.; Yi X.; Hou F.; Wibowo D.; Zhang F.; Zhao D. Y.; Gao H. J.; Zhao C. X. Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano, 2019, 13(7), 7410-7424. doi:10.1021/acsnano.9b03924http://dx.doi.org/10.1021/acsnano.9b03924
Wilhelm S.; Tavares A. J.; Dai Q.; Ohta S.; Audet J.; Dvorak H. F.; Chan W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1, 16014. doi:10.1038/natrevmats.2016.14http://dx.doi.org/10.1038/natrevmats.2016.14
Sun Q. H.; Zhou Z. X.; Qiu N. S.; Shen Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater., 2017, 29(14), 1606628. doi:10.1002/adma.201606628http://dx.doi.org/10.1002/adma.201606628
Cheng D. B.; Wang D.; Gao Y. J.; Wang L.; Qiao Z. Y.; Wang H. Autocatalytic morphology transformation platform for targeted drug accumulation. J. Am. Chem. Soc., 2019, 141(10), 4406-4411. doi:10.1021/jacs.8b13512http://dx.doi.org/10.1021/jacs.8b13512
Ulbrich K.; Holá K.; Šubr V.; Bakandritsos A.; Tuček J.; Zbořil R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431. doi:10.1021/acs.chemrev.5b00589http://dx.doi.org/10.1021/acs.chemrev.5b00589
Ye D. J.; Shuhendler A. J.; Cui L. N.; Tong L.; Tee S. S.; Tikhomirov G.; Felsher D. W.; Rao J. H. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem., 2014, 6(6), 519-526. doi:10.1038/nchem.1920http://dx.doi.org/10.1038/nchem.1920
Chien M. P.; Carlini A. S.; Hu D. H.; Barback C. V.; Rush A. M.; Hall D. J.; Orr G.; Gianneschi N. C. Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. J. Am. Chem. Soc., 2013, 135(50), 18710-18713. doi:10.1021/ja408182phttp://dx.doi.org/10.1021/ja408182p
Dragulescu-Andrasi A.; Kothapalli S. R.; Tikhomirov G. A.; Rao J. H.; Gambhir S. S. Activatable oligomerizable imaging agents for photoacoustic imaging of furin-like activity in living subjects. J. Am. Chem. Soc., 2013, 135(30), 11015-11022. doi:10.1021/ja4010078http://dx.doi.org/10.1021/ja4010078
Shuhendler A. J.; Pu K. Y.; Cui L. N.; Uetrecht J. P.; Rao J. H. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol., 2014, 32(4), 373-380. doi:10.1038/nbt.2838http://dx.doi.org/10.1038/nbt.2838
Wang L. V.; Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 2012, 335(6075), 1458-1462. doi:10.1126/science.1216210http://dx.doi.org/10.1126/science.1216210
Fu Q. R.; Zhu R.; Song J. B.; Yang H. H.; Chen X. Y. Photoacoustic imaging: contrast agents and their biomedical applications. Adv. Mater., 2019, 31(6), e1805875.
Pu K. Y.; Shuhendler A. J.; Jokerst J. V.; Mei J. G.; Gambhir S. S.; Bao Z. N.; Rao J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol., 2014, 9(3), 233-239. doi:10.1038/nnano.2013.302http://dx.doi.org/10.1038/nnano.2013.302
Zhang X. H.; Cheng D. B.; Ji L.; An H. W.; Wang D.; Yang Z. X.; Chen H.; Qiao Z. Y.; Wang H. Photothermal-promoted morphology transformation in vivo monitored by photoacoustic imaging. Nano Lett., 2020, 20(2), 1286-1295. doi:10.1021/acs.nanolett.9b04752http://dx.doi.org/10.1021/acs.nanolett.9b04752
Ghosh D.; Bagley A. F.; Na Y. J.; Birrer M. J.; Bhatia S. N.; Belcher A. M. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(38), 13948-13953. doi:10.1073/pnas.1400821111http://dx.doi.org/10.1073/pnas.1400821111
Wang P. Y.; Fan Y.; Lu L. F.; Liu L.; Fan L. L.; Zhao M. Y.; Xie Y.; Xu C. J.; Zhang F. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun., 2018, 9(1), 2898. doi:10.1038/s41467-018-05113-8http://dx.doi.org/10.1038/s41467-018-05113-8
Song X. J.; Gong H.; Yin S. N.; Cheng L.; Wang C.; Li Z. W.; Li Y. G.; Wang X. Y.; Liu G.; Liu Z. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv. Funct. Mater., 2014, 24(9), 1194-1201. doi:10.1002/adfm.201302463http://dx.doi.org/10.1002/adfm.201302463
An H. W.; Hou D.; Zheng R.; Wang M. D.; Zeng X. Z.; Xiao W. Y.; Yan T. D.; Wang J. Q.; Zhao C. H.; Cheng L. M.; Zhang J. M.; Wang L.; Wang Z. Q.; Wang H.; Xu W. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma. ACS Nano, 2020, 14(1), 927-936. doi:10.1021/acsnano.9b08209http://dx.doi.org/10.1021/acsnano.9b08209
0
Views
77
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution