浏览全部资源
扫码关注微信
青岛科技大学高分子科学与工程学院 青岛 266042
Yong-xin Duan, E-mail: dyx@qust.edu.cn
Published:20 July 2023,
Published Online:11 April 2023,
Received:15 November 2022,
Accepted:14 February 2023
扫 描 看 全 文
侯晓宇,胡洁,刘亚兵等.羧基丁苯橡胶/羧基化纤维素纳米晶自愈合复合材料的制备及性能研究[J].高分子学报,2023,54(07):1074-1083.
Hou Xiao-yu,Hu Jie,Liu Ya-bing,et al.Preparation and Properties of Carboxylated Styrene-Butadiene/ Carboxylated Cellulose Nanocrystal Composites with Self-healing Properties[J].ACTA POLYMERICA SINICA,2023,54(07):1074-1083.
侯晓宇,胡洁,刘亚兵等.羧基丁苯橡胶/羧基化纤维素纳米晶自愈合复合材料的制备及性能研究[J].高分子学报,2023,54(07):1074-1083. DOI: 10.11777/j.issn1000-3304.2023.22388.
Hou Xiao-yu,Hu Jie,Liu Ya-bing,et al.Preparation and Properties of Carboxylated Styrene-Butadiene/ Carboxylated Cellulose Nanocrystal Composites with Self-healing Properties[J].ACTA POLYMERICA SINICA,2023,54(07):1074-1083. DOI: 10.11777/j.issn1000-3304.2023.22388.
动态交联键的引入可赋予橡胶制品自愈合性能. 本文利用氧化锌(ZnO)的Zn
2+
与羧基丁苯橡胶(XSBR)和羧基化纤维素纳米晶(CCA)的羧基间可形成离子键,CCA的羧基与XSBR的羧基间可形成氢键,制备了具有氢键和离子键双动态交联网络的羧基丁苯橡胶(X/C/Z)复合材料. 傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)结果证实在X/C/Z复合材料中构筑了双动态交联网络. 与XSBR/CCA和XSBR/ZnO复合材料相比,离子键和氢键共存的双动态交联网络以及CCA和ZnO的协同补强赋予了X/C/Z复合材料更优异的物理机械性能及自愈合能力. 当CCA添加量为5 wt%时,随ZnO用量增加,X/C/Z复合材料的交联密度逐渐提高,复合材料的拉伸强度呈递增趋势,而断裂伸长率逐渐下降. 同时,ZnO用量的增加提供了更多可与XSBR和CCA上羧基络合形成离子键的Zn
2+
,进而使复合材料的自愈合能力随ZnO含量的增加而提高. 利用ZnO和CCA作为补强/交联填料,采用简单便捷的方法制备了性能优异的羧基丁苯橡胶自愈合复合材料,为自愈合复合材料的开发提供了一种思路.
The self-healing properties of rubber products can be given by the introduction of dynamic crosslinking bonds. In this work
carboxylated cellulose nanocrystals (CCA) and zinc oxide (ZnO) were selected as fillers. Carboxylated styrene-butadiene rubber (XSBR) composites (X/C/Z) with dual dynamic crosslinking networks were constructed by constructing ionic bonds between Zn
2+
of ZnO and the carboxyl groups of XSBR and CCA
as well as hydrogen bonds between the carboxyl groups of CCA and XSBR. The Fourier transform infrared spectroscopy (FTIR) results confirmed the existence of dual dynamic crosslinking networks in X/C/Z composites. Compared with XSBR/CCA and XSBR/ZnO composites
the dual dynamic crosslinking networks and the synergistic reinforcement of CCA and ZnO endow X/C/Z composites with more excellent physical and mechanical properties. Fixed the CCA content at 5 wt%
the crosslinking density of X/C/Z composites increased with the increase of ZnO content. The tensile strength of the composites also showed an increasing trend
while the elongation at break gradually decreased. Meanwhile
the increase of ZnO content provided more Zn
2+
that can complex with the carboxyl groups of XSBR and CCA to form ionic bonds. As a result
the self-healing ability of the composites were enhanced greatly. In this study
using ZnO and CCA as reinforcing/cross-linking fillers
carboxylated styrene-butadiene rubber self-healing composites with excellent properties were prepared by a simple and convenient method
which provided a way for the development of self-healing composites.
羧基化纤维素纳米晶氧化锌羧基丁苯橡胶动态交联自愈合
Carboxylated cellulose nanocrystalsZinc oxideCarboxylated styrene-butadiene rubberDynamic crosslinkingSelf-healing
Zhu G.; Dufresne A. Synergistic reinforcing and cross-linking effect of thiol-ene-modified cellulose nanofibrils on natural rubber. Carbohydr. Polym., 2022, 278, 118954. doi:10.1016/j.carbpol.2021.118954http://dx.doi.org/10.1016/j.carbpol.2021.118954
Zhou Y. H.; Fan M. Z.; Chen L. H.; Zhuang J. D. Lignocellulosic fibre mediated rubber composites: an overview. Compos. B Eng., 2015, 76, 180-191. doi:10.1016/j.compositesb.2015.02.028http://dx.doi.org/10.1016/j.compositesb.2015.02.028
Low D. Y. S.; Supramaniam J.; Soottitantawat A.; Charinpanitkul T.; Tanthapanichakoon W.; Tan K. W.; Tang S. Y. Recent developments in nanocellulose-reinforced rubber matrix composites: a review. Polymers, 2021, 13(4), 550. doi:10.3390/polym13040550http://dx.doi.org/10.3390/polym13040550
Sordo F.; Mougnier S. J.; Loureiro N.; Tournilhac F.; Michaud V. Design of self-healing supramolecular rubbers with a tunable number of chemical cross-links. Macromolecules, 2015, 48(13), 4394-4402. doi:10.1021/acs.macromol.5b00747http://dx.doi.org/10.1021/acs.macromol.5b00747
Yang L.; Wu M. L.; Yang X. L.; Lin B. F.; Fu L. H.; Xu C. H. Healable, recyclable, and adhesive rubber composites equipped with ester linkages, zinc ionic bonds, and hydrogen bonds. Compos. A Appl. Sci. Manuf., 2022, 155, 106816. doi:10.1016/j.compositesa.2022.106816http://dx.doi.org/10.1016/j.compositesa.2022.106816
Roy K.; Debnath S. C.; Pongwisuthiruchte A.; Potiyaraj P. Review on the conceptual design of self-healable nitrile rubber composites. ACS Omega, 2021, 6(15), 9975-9981. doi:10.1021/acsomega.0c05743http://dx.doi.org/10.1021/acsomega.0c05743
Mauldin T. C.; Kessler M. R. Self-healing polymers and composites. Int. Mater. Rev., 2010, 55(6), 317-346. doi:10.1179/095066010x12646898728408http://dx.doi.org/10.1179/095066010x12646898728408
Buaksuntear K.; Limarun P.; Suethao S.; Smitthipong W. Non-covalent interaction on the self-healing of mechanical properties in supramolecular polymers. Int. J. Mol. Sci., 2022, 23(13), 6902. doi:10.3390/ijms23136902http://dx.doi.org/10.3390/ijms23136902
Li G.; Zhang H. J.; Fortin D.; Xia H. S.; Zhao Y. Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir, 2015, 31(42), 11709-11716. doi:10.1021/acs.langmuir.5b03474http://dx.doi.org/10.1021/acs.langmuir.5b03474
Wang X. P.; Liang D.; Cheng B. K. Preparation and research of intrinsic self-healing elastomers based on hydrogen and ionic bond. Compos. Sci. Technol., 2020, 193, 108127. doi:10.1016/j.compscitech.2020.108127http://dx.doi.org/10.1016/j.compscitech.2020.108127
Lei, Z. Q.; Xie, P.; Rong, M. Z; Zhang, M. Q. Catalyst-free dynamic exchange of aromatic Schiff base bonds and its application to self-healing and remolding of crosslinked polymers. J. Mater. Chem. A, 2015, 3(39), 19662-19668. doi:10.1039/c5ta05788dhttp://dx.doi.org/10.1039/c5ta05788d
Utrera-Barrios S.; Araujo-Morera J.; Pulido de Los Reyes, L.; Verdugo Manzanares R.; Verdejo R.; López-Manchado M. Á.; Hernández Santana M. An effective and sustainable approach for achieving self-healing in nitrile rubber. Eur. Polym. J., 2020, 139, 110032. doi:10.1016/j.eurpolymj.2020.110032http://dx.doi.org/10.1016/j.eurpolymj.2020.110032
Xu C. H.; Cao L. M.; Huang X. H.; Chen Y. K.; Lin B. F.; Fu L. H. Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network. ACS Appl. Mater. Interfaces, 2017, 9(34), 29363-29373. doi:10.1021/acsami.7b09997http://dx.doi.org/10.1021/acsami.7b09997
Xu C. H.; Cui R.; Fu L. H.; Lin B. F. Recyclable and heat-healable epoxidized natural rubber/bentonite composites. Compos. Sci. Technol., 2018, 167, 421-430. doi:10.1016/j.compscitech.2018.08.027http://dx.doi.org/10.1016/j.compscitech.2018.08.027
Du W. N.; Jin Y.; Pan J. Z.; Fan W. H.; Lai S. Q.; Sun X. P. Thermal induced shape-memory and self-healing of segmented polyurethane containing diselenide bonds. J. Appl. Polym. Sci., 2018, 135(22), 46326. doi:10.1002/app.46326http://dx.doi.org/10.1002/app.46326
Burnworth M.; Tang L. M.; Kumpfer J. R.; Duncan A. J.; Beyer F. L.; Fiore G. L.; Rowan S. J.; Weder C. Optically healable supramolecular polymers. Nature, 2011, 472(7343), 334-337. doi:10.1038/nature09963http://dx.doi.org/10.1038/nature09963
Martín R.; Rekondo A.; Echeberria J.; Cabañero G.; Grande H. J.; Odriozola I. Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. Chem. Commun., 2012, 48(66), 8255-8257. doi:10.1039/c2cc32030dhttp://dx.doi.org/10.1039/c2cc32030d
Xiao D. S.; Yuan Y. C.; Rong M. Z.; Zhang M. Q. Self-healing epoxy based on cationic chain polymerization. Polymer, 2009, 50(13), 2967-2975. doi:10.1016/j.polymer.2009.04.029http://dx.doi.org/10.1016/j.polymer.2009.04.029
Xu X. Z.; Liu F.; Jiang L.; Zhu J. Y.; Haagenson D.; Wiesenborn D. P. Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces, 2013, 5(8), 2999-3009. doi:10.1021/am302624thttp://dx.doi.org/10.1021/am302624t
Ojogbo E.; Tzoganakis C.; Mekonnen T. H. Effect of extrusion, batch-mixing, and co-coagulation on the dispersion of CNCs in natural rubber—CNC nanocomposites. Compos. A Appl. Sci. Manuf., 2021, 149, 106580. doi:10.1016/j.compositesa.2021.106580http://dx.doi.org/10.1016/j.compositesa.2021.106580
Yasin S.; Hussain M.; Zheng Q.; Song Y. H. Effects of ionic liquid on cellulosic nanofiller filled natural rubber bionanocomposites. J. Colloid Interface Sci., 2021, 591, 409-417. doi:10.1016/j.jcis.2021.02.029http://dx.doi.org/10.1016/j.jcis.2021.02.029
Jardin J. M.; Zhang Z.; Hu G.; Tam K. C.; Mekonnen T. H. Reinforcement of rubber nanocomposite thin sheets by percolation of pristine cellulose nanocrystals. Int. J. Biol. Macromol., 2020, 152, 428-436. doi:10.1016/j.ijbiomac.2020.02.303http://dx.doi.org/10.1016/j.ijbiomac.2020.02.303
Xiang H. S.; Wang B. C.; Zhong M. Q.; Liu W. G.; Yu D. H.; Wang Y. L.; Tam K. C.; Zhou G. F.; Zhang Z. Sustainable and versatile superhydrophobic cellulose nanocrystals. ACS Sustainable Chem. Eng., 2022, 10(18), 5939-5948. doi:10.1021/acssuschemeng.2c00311http://dx.doi.org/10.1021/acssuschemeng.2c00311
Gomri C.; Cretin M.; Semsarilar M. Recent progress on chemical modification of cellulose nanocrystal (CNC) and its application in nanocomposite films and membranes-a comprehensive review. Carbohydr. Polym., 2022, 294, 119790. doi:10.1016/j.carbpol.2022.119790http://dx.doi.org/10.1016/j.carbpol.2022.119790
Hu J.; Kong Z. Q.; Liu K.; Qin J. L.; Tao Y. H.; Zhou L. J.; Yuan Y.; Jiang M.; Duan Y. X.; Zhang J. M. Carboxylation of cellulose nanocrystals for reinforcing and toughing rubber through dual cross-linking networks. ACS Appl. Polym. Mater., 2021, 3(12), 6120-6129. doi:10.1021/acsapm.1c00975http://dx.doi.org/10.1021/acsapm.1c00975
程国峰, 杨传铮, 黄月鸿. 密堆六方纳米ZnO的X射线衍射表征与研究. 无机材料学报, 2008, 23(1), 199-202. doi:10.3321/j.issn:1000-324X.2008.01.039http://dx.doi.org/10.3321/j.issn:1000-324X.2008.01.039
Han X. G.; He H. Z.; Kuang Q.; Zhou X.; Zhang X. H.; Xu T.; Xie Z. X.; Zheng L. S. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C, 2009, 113(2), 584-589. doi:10.1021/jp808233ehttp://dx.doi.org/10.1021/jp808233e
Flauzino Neto W. P.; Mariano M.; da Silva I. S. V.; Silvério H. A.; Putaux J. L.; Otaguro H.; Pasquini D.; Dufresne A. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr. Polym., 2016, 153, 143-152. doi:10.1016/j.carbpol.2016.07.073http://dx.doi.org/10.1016/j.carbpol.2016.07.073
Yu H. Y.; Zhang D. Z.; Lu F. F.; Yao J. M. New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustainable Chem. Eng., 2016, 4(5), 2632-2643. doi:10.1021/acssuschemeng.6b00126http://dx.doi.org/10.1021/acssuschemeng.6b00126
0
Views
54
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution