浏览全部资源
扫码关注微信
1.宁波大学信息科学与工程学院 宁波 315211
2.中国科学院海洋新材料与应用技术重点实验室 中国科学院宁波材料技术与工程研究所 宁波 315201
Hai-ming Chen, E-mail: chenhaiming@nimte.ac.cn
He Li, E-mail: lihe@nimte.ac.cn
Published:20 August 2023,
Published Online:23 April 2023,
Received:02 January 2023,
Accepted:21 February 2023
扫 描 看 全 文
林浩浩,陈海明,茅东升等.电场响应型高强度压敏胶的设计、制备与性能研究[J].高分子学报,2023,54(08):1166-1175.
Lin Hao-hao,Chen Hai-ming,Mao Dong-sheng,et al.Study on Design and Preparation of the Electric-field Responsive High-strength Pressure Sensitive Adhesive[J].ACTA POLYMERICA SINICA,2023,54(08):1166-1175.
林浩浩,陈海明,茅东升等.电场响应型高强度压敏胶的设计、制备与性能研究[J].高分子学报,2023,54(08):1166-1175. DOI: 10.11777/j.issn1000-3304.2023.23005.
Lin Hao-hao,Chen Hai-ming,Mao Dong-sheng,et al.Study on Design and Preparation of the Electric-field Responsive High-strength Pressure Sensitive Adhesive[J].ACTA POLYMERICA SINICA,2023,54(08):1166-1175. DOI: 10.11777/j.issn1000-3304.2023.23005.
界面结合和本体强度是影响压敏胶黏结强度的两大因素,往往需要同时满足较低模量促进表面润湿和较高本体强度来阻碍裂纹扩展. 然而,材料的模量和本体强度往往正相关,这为设计高性能压敏胶带来了挑战. 本文工作通过在聚电解质中引入固相离子盐(LiTFSI),不仅有效降低了压敏胶的模量(7.56 MPa),增强界面结合,而且保持了较高的强度(884 kPa),使得该压敏胶对金属铝的黏结强度可达1.09 MPa,对高分子有机聚合物(如聚对苯二甲酸乙二醇酯)的黏结强度高达1.17 MPa. 更进一步,基于离子性基团和游离离子的迁移或取向,赋予该压敏胶显著的电场增强效应,对金属铝的黏结增强效率可达89%. 当施加反向电压后,离子性基团的解取向和游离离子的反向运动,使黏结强度得以回落,体现了电场对黏结强度良好的调控作用. 最后,作为导电黏合剂,该压敏胶在摩擦纳米发电机等领域的应用得到了证明.
Interfacial bonding and cohesive strength are the two main factors affecting the bonding strength of pressure-sensitive adhesives (PSA)
so that meet both low moduli to promote surface wetting and high cohesive strength to impede crack growth is necessary. However
a positive correlation between the moduli and cohesion strength often poses a challenge in designing high-performance PSA. In this study
introducing solid-phase ionic salt (LiTFSI) into the polyelectrolyte not only effectively reduces the modulus of the PSA (7.56 MPa) and enhances the interfacial bonding
but also maintains a high strength (884 kPa)
which endows a remarkable lap-shear strength of 1.09 and 1.17 MPa when bonded to metallic aluminum and polyethylene terephthalate (PET)
respectively. Furthermore
the migration and/or orientation of ionic groups and free ions enhance the lap-shear strength with an efficiency of 89%. Moreover
a reversed voltage will promote ionic groups and free ions disorient and migrate in a reversed direction
resulting in lower lap-shear strength. Finally
the effect of facilitating charge collection of such PSA in triboelectric nanogenerators was demonstrated.
离子凝胶压敏胶电场增强黏结强度
IonogelPressure-sensitive adhesiveElectric field reinforcementAdhesive strength
Han I. K.; Song K. I.; Jung S. M.; Jo Y.; Kwon J.; Chung T.; Yoo S.; Jang J.; Kim Y. T.; Hwang D. S.; Kim Y. S. Electroconductive, adhesive, non-swelling, and viscoelastic hydrogels for bioelectronics. Adv. Mater., 2023, 35(4), e2203431. doi:10.1002/adma.202370028http://dx.doi.org/10.1002/adma.202370028
Tan P.; Wang H. F.; Xiao F. R.; Lu X.; Shang W. H.; Deng X. B.; Song H. F.; Xu Z. Y.; Cao J. F.; Gan T. S.; Wang B.; Zhou X. C. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun., 2022, 13(1), 358. doi:10.1038/s41467-022-28027-yhttp://dx.doi.org/10.1038/s41467-022-28027-y
Zhang J.; Wang W. X.; Zhang Y.; Wei Q.; Han F.; Dong S. Y.; Liu D. Q.; Zhang S. G. Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction. Nat. Commun., 2022, 13(1), 5214. doi:10.1038/s41467-022-32997-4http://dx.doi.org/10.1038/s41467-022-32997-4
Yi M. B.; Lee T. H.; Han G. Y.; Kim H.; Kim H. J.; Kim Y.; Ryou H. S.; Jin D. U. Movable cross-linking in adhesives: Superior stretching and adhesion properties via a supramolecular sliding effect. ACS Appl. Polym. Mater., 2021, 3(5), 2678-2686. doi:10.1021/acsapm.1c00240http://dx.doi.org/10.1021/acsapm.1c00240
Li J. L.; Zhang Y. F.; Zhang Q.; Cai C. Y.; Li F. F.; Dong S. Y. Supramolecular pressure-sensitive adhesives with rapid, strong, water-resistant, and underwater adhesion. Adv. Mater. Interfaces, 2023, 10(4), 2202005. doi:10.1002/admi.202202005http://dx.doi.org/10.1002/admi.202202005
Jenkins C. L.; Siebert H. M.; Wilker J. J. Integrating mussel chemistry into a bio-based polymer to create degradable adhesives. Macromolecules, 2017, 50(2), 561-568. doi:10.1021/acs.macromol.6b02213http://dx.doi.org/10.1021/acs.macromol.6b02213
Lei Y. F.; Wang X. L.; Liu B. W.; Ding X. M.; Chen L.; Wang Y. Z. Fully bio-based pressure-sensitive adhesives with high adhesivity derived from epoxidized soybean oil and rosin acid. ACS Sustainable Chem. Eng., 2020, 8(35), 13261-13270. doi:10.1021/acssuschemeng.0c03451http://dx.doi.org/10.1021/acssuschemeng.0c03451
Yang B. W.; Yuan W. Z. Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS Appl. Mater. Interfaces, 2019, 11(43), 40620-40628. doi:10.1021/acsami.9b14040http://dx.doi.org/10.1021/acsami.9b14040
Xu J. J.; Wang G. Y.; Wu Y. F.; Ren X. Y.; Gao G. H. Ultrastretchable wearable strain and pressure sensors based on adhesive, tough, and self-healing hydrogels for human motion monitoring. ACS Appl. Mater. Interfaces, 2019, 11(28), 25613-25623. doi:10.1021/acsami.9b08369http://dx.doi.org/10.1021/acsami.9b08369
Yu Z. C.; Wu P. Y. Water-resistant ionogel electrode with tailorable mechanical properties for aquatic ambulatory physiological signal monitoring. Adv. Funct. Mater., 2021, 31(51), 2107226. doi:10.1002/adfm.202107226http://dx.doi.org/10.1002/adfm.202107226
Yu Z. C.; Wu P. Y. A highly transparent ionogel with strength enhancement ability for robust bonding in an aquatic environment. Mater. Horiz., 2021, 8(7), 2057-2064. doi:10.1039/d1mh00461ahttp://dx.doi.org/10.1039/d1mh00461a
Ma X. T.; Zhou X.; Ding J. J.; Huang B.; Wang P. Y.; Zhao Y.; Mu Q. Y.; Zhang S. H.; Ren C. G.; Xu W. L. Hydrogels for underwater adhesion: adhesion mechanism, design strategies and applications. J. Mater. Chem. A, 2022, 10(22), 11823-11853. doi:10.1039/d2ta01960dhttp://dx.doi.org/10.1039/d2ta01960d
Li J. L.; Luo S.; Li F. F.; Dong S. Y. Supramolecular polymeric pressure-sensitive adhesive that can be directly operated at low temperatures. ACS Appl. Mater. Interfaces, 2022, 14(23), 27476-27483. doi:10.1021/acsami.2c05951http://dx.doi.org/10.1021/acsami.2c05951
Cai C. Y.; Wu S. G.; Tan Z. J.; Li F. F.; Dong S. Y. On-site supramolecular adhesion to wet and soft surfaces via solvent exchange. ACS Appl. Mater. Interfaces, 2021, 13(44), 53083-53090. doi:10.1021/acsami.1c15959http://dx.doi.org/10.1021/acsami.1c15959
Sun P.; Mei S.; Xu J. F.; Zhang X. A bio-based supramolecular adhesive: ultra-high adhesion strengths at both ambient and cryogenic temperatures and excellent multi-reusability. Adv. Sci. (Weinh), 2022, 9(28), e2203182. doi:10.1002/advs.202203182http://dx.doi.org/10.1002/advs.202203182
Zhang Y. P.; Xu J. H.; Wang H. B. Bio-based, self-adhesive, and self-healing ionogel with excellent mechanical properties for flexible strain sensor. RSC Adv., 2021, 11(59), 37661-37666. doi:10.1039/d1ra06686bhttp://dx.doi.org/10.1039/d1ra06686b
Li T. C.; Liu F.; Yang X. M.; Hao S.; Cheng Y.; Li S. J.; Zhu H. N.; Song H. Z. Muscle-mimetic highly tough, conductive, and stretchable poly(ionic liquid) liquid crystalline ionogels with ultrafast self-healing, super adhesive, and remarkable shape memory properties. ACS Appl. Mater. Interfaces, 2022, 14(25), 29261-29272. doi:10.1021/acsami.2c06662http://dx.doi.org/10.1021/acsami.2c06662
Yu Z. C.; Wu P. Y. Underwater communication and optical camouflage ionogels. Adv. Mater., 2021, 33(24), e2008479. doi:10.1002/adma.202008479http://dx.doi.org/10.1002/adma.202008479
Zhao L. Y.; Wang B. J.; Mao Z. P.; Sui X. F.; Feng X. L. Nonvolatile, stretchable and adhesive ionogel fiber sensor designed for extreme environments. Chem. Eng. J., 2022, 433, 133500. doi:10.1016/j.cej.2021.133500http://dx.doi.org/10.1016/j.cej.2021.133500
Zhu J. J.; Lu X. M.; Zhang W.; Liu X. K. Substrate-independent, reversible, and easy-release ionogel adhesives with high bonding strength. Macromol. Rapid Commun., 2020, 41(24), e2000098. doi:10.1002/marc.202000098http://dx.doi.org/10.1002/marc.202000098
Shi P. R.; Wang Y. F.; Tjiu W. W.; Zhang C.; Liu T. X. Highly stretchable, fast self-healing, and waterproof fluorinated copolymer ionogels with selectively enriched ionic liquids for human-motion detection. ACS Appl. Mater. Interfaces, 2021, 13(41), 49358-49368. doi:10.1021/acsami.1c16081http://dx.doi.org/10.1021/acsami.1c16081
Lewandowska A.; Gajewski P.; Szcześniak K.; Fojud Z.; Robakowska M.; Skrzypczak A.; Voelkel A.; Marcinkowska A. Thiol-ene ionogels based on polymerizable imidazolium ionic liquids. Polym. Chem., 2022, 13(21), 3154-3170. doi:10.1039/d1py01726hhttp://dx.doi.org/10.1039/d1py01726h
Yang H.; Li C. H.; Tang J. D. Soft elastomer coatings for ionogels. Extreme Mech. Lett., 2022, 54, 101761. doi:10.1016/j.eml.2022.101761http://dx.doi.org/10.1016/j.eml.2022.101761
Zhang L. M.; Jia K.; Wang J.; Zhao J. Y.; Tang J. D.; Hu J. Stretchable and transparent ionogel-based heaters. Mater. Horiz., 2022, 9(7), 1911-1920. doi:10.1039/d1mh01775fhttp://dx.doi.org/10.1039/d1mh01775f
Fang K.; Gu Q. W.; Zeng M. Z.; Huang Z. M.; Qiu H. F.; Miao J. R.; Fang Y.; Zhao Y. Y.; Xiao Y.; Xu T.; Golodok R. P.; Savich V. V.; Ilyushchenko A. P.; Ai F. R.; Liu D. L.; Wang R. Tannic acid-reinforced zwitterionic hydrogels with multi-functionalities for diabetic wound treatment. J. Mater. Chem. B, 2022, 10(22), 4142-4152. doi:10.1039/d1tb02413bhttp://dx.doi.org/10.1039/d1tb02413b
Gao G. R.; Yang F. J.; Zhou F. H.; He J.; Lu W.; Xiao P.; Yan H. Z.; Pan C. F.; Chen T.; Wang Z. L. Bioinspired self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on targeted substrates. Adv. Mater., 2020, 32(50), e2004290. doi:10.1002/adma.202004290http://dx.doi.org/10.1002/adma.202004290
Mo J. Y.; Dai Y. H.; Zhang C.; Zhou Y. S.; Li W. B.; Song Y. X.; Wu C. Y.; Wang Z. K. Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions. Mater. Horiz., 2021, 8(12), 3409-3416. doi:10.1039/d1mh01324fhttp://dx.doi.org/10.1039/d1mh01324f
Niu W. W.; Zhu J. J.; Zhang W.; Liu X. K. Simply formulated dry pressure-sensitive adhesives for substrate-independent underwater adhesion. ACS Mater. Lett., 2022, 4(2), 410-417. doi:10.1021/acsmaterialslett.1c00826http://dx.doi.org/10.1021/acsmaterialslett.1c00826
Moon H.; Jeong K.; Kwak M. J.; Choi S. Q.; Im S. G. Solvent-free deposition of ultrathin copolymer films with tunable viscoelasticity for application to pressure-sensitive adhesives. ACS Appl. Mater. Interfaces, 2018, 10(38), 32668-32677. doi:10.1021/acsami.8b10009http://dx.doi.org/10.1021/acsami.8b10009
Fan H. L.; Wang J. H.; Tao Z.; Huang J. C.; Rao P.; Kurokawa T.; Gong J. P. Adjacent cationic-aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater. Nat. Commun., 2019, 10(1), 5127. doi:10.1038/s41467-019-13171-9http://dx.doi.org/10.1038/s41467-019-13171-9
He Z. R.; Yuan W. Z. Highly stretchable, adhesive ionic liquid-containing nanocomposite hydrogel for self-powered multifunctional strain sensors with temperature tolerance. ACS Appl. Mater. Interfaces, 2021, 13(44), 53055-53066. doi:10.1021/acsami.1c14139http://dx.doi.org/10.1021/acsami.1c14139
Wang H. B.; Xu J. H.; Li K. J.; Dong Y.; Du Z. L.; Wang S. Highly stretchable, self-healable, and self-adhesive ionogels with efficient antibacterial performances for a highly sensitive wearable strain sensor. J. Mater. Chem. B, 2022, 10(8), 1301-1307. doi:10.1039/d2tb00041ehttp://dx.doi.org/10.1039/d2tb00041e
Zhang J. X.; Liu E. J.; Hao S.; Yang X. M.; Li T. C.; Lou C. G.; Run M. T.; Song H. Z. 3D printable, ultra-stretchable, Self-healable, and self-adhesive dual cross-linked nanocomposite ionogels as ultra-durable strain sensors for motion detection and wearable human-machine interface. Chem. Eng. J., 2022, 431, 133949. doi:10.1016/j.cej.2021.133949http://dx.doi.org/10.1016/j.cej.2021.133949
Wei J. J.; Zheng Y. F.; Chen T. A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators. Mater. Horiz., 2021, 8(10), 2761-2770. doi:10.1039/d1mh00998bhttp://dx.doi.org/10.1039/d1mh00998b
Liu Y. Q.; Wang P. D.; Su X.; Xu L.; Tian Z. L.; Wang H.; Ji G. J.; Huang J. Y. Electrically programmable interfacial adhesion for ultrastrong hydrogel bonding. Adv. Mater., 2022, 34(13), e2108820. doi:10.1002/adma.202108820http://dx.doi.org/10.1002/adma.202108820
Zhang J.; Chen Z. Y.; Zhang Y.; Dong S. Y.; Chen Y. F.; Zhang S. G. Poly(ionic liquid)s containing alkoxy chains and bis(trifluoromethanesulfonyl)imide anions as highly adhesive materials. Adv. Mater., 2021, 33(30), e2100962. doi:10.1002/adma.202100962http://dx.doi.org/10.1002/adma.202100962
Shao J. J.; Willatzen M.; Shi Y. J.; Wang Z. L. 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators. Nano Energy, 2019, 60, 630-640. doi:10.1016/j.nanoen.2019.03.072http://dx.doi.org/10.1016/j.nanoen.2019.03.072
Lee Y.; Lim S.; Song W. J.; Lee S. D.; Yoon S. J.; Park J. M.; Lee M. Y.; Park Y. L.; Sun J. Y. Triboresistive touch sensing: grid-free touch-point recognition based on monolayered ionic power generators. Adv. Mater., 2022, 34(19), e2108586. doi:10.1002/adma.202270143http://dx.doi.org/10.1002/adma.202270143
Jia L. Y.; Guo Z. H.; Li L. W.; Pan C. X.; Zhang P. P.; Xu F.; Pu X.; Wang Z. L. Electricity generation and self-powered sensing enabled by dynamic electric double layer at hydrogel-dielectric elastomer interfaces. ACS Nano, 2021, 15(12), 19651-19660. doi:10.1021/acsnano.1c06950http://dx.doi.org/10.1021/acsnano.1c06950
Pradel K. C.; Fukata N. Systematic optimization of triboelectric nanogenerator performance through surface micropatterning. Nano Energy, 2021, 83, 105856. doi:10.1016/j.nanoen.2021.105856http://dx.doi.org/10.1016/j.nanoen.2021.105856
Xue J. H.; Zheng N.; Zhao W. Y.; Cao X.; Wang Z. L. Rubik-cube-based self-powered sensors and system: an approach toward smart toys. Adv. Funct. Mater., 2022, 32(1), 2107099. doi:10.1002/adfm.202107099http://dx.doi.org/10.1002/adfm.202107099
0
Views
63
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution