浏览全部资源
扫码关注微信
杭州师范大学材料与化学化工学院 杭州 311121
Published:20 June 2023,
Published Online:17 April 2023,
Received:13 January 2023,
Accepted:01 March 2023
扫 描 看 全 文
宋丽平,朱欣怡,黄又举.纳米生物传感器探针材料:合成、组装及应用[J].高分子学报,2023,54(06):870-891.
Song Li-ping,Zhu Xin-yi,Huang You-ju.Probe Materials of Nanobiosensors: Synthesis, Assembly and Applications[J].ACTA POLYMERICA SINICA,2023,54(06):870-891.
宋丽平,朱欣怡,黄又举.纳米生物传感器探针材料:合成、组装及应用[J].高分子学报,2023,54(06):870-891. DOI: 10.11777/j.issn1000-3304.2023.23011.
Song Li-ping,Zhu Xin-yi,Huang You-ju.Probe Materials of Nanobiosensors: Synthesis, Assembly and Applications[J].ACTA POLYMERICA SINICA,2023,54(06):870-891. DOI: 10.11777/j.issn1000-3304.2023.23011.
生物传感器因选择性高、分析速度快、准确度高等特点,在生物医学、环境监测及食品安全等领域应用广泛. 纳米探针材料是生物传感器中的核心部件,对检测信号的输出和放大,起到至关重要的作用.本文总结了近十年来本团队利用智能高分子精准调控纳米粒子合成的研究成果,发展了多种生长模式,量身定制出三十多种高效可医用探针材料;通过智能高分子修饰纳米探针表面,实现了不同维度(1D、2D和3D)的宏观可控自组装. 最后,基于设计的探针材料及其组装结构,构建了一系列生物传感器,探索了其在食品安全检测和医疗诊断领域的应用.
Biosensors are devices that are sensitive to biological substances and convert their changes into monitorable optical and electrical signals. Owing to their remarkable advantages of high selectivity
fast analysis speed and high accuracy
they are widely applied in biomedical
environmental monitoring and food safety. Nanoprobes
which play vital roles in the output and amplification of signals
are the core components of biosensors. The signals of nanoprobes are intrinsically related to their morphology
surface chemistry and assembled structure. In this feature article
we summarized our research on the following three aspects: (1) Use of intelligent polymers to precisely regulate the synthesis of nanoprobes through three growth modes
such as intelligent growth mode
chemically anchored seed-growth mode and micellar limited growth mode. Up to now
we have customized more than 30 kinds of efficient biomedical probe materials; (2) Developed the intelligent multifunctional surface engineering strategies on probe materials
and achieved 1D
2D and 3D self-assembly of nanoprobes by adjusting the dynamic and thermodynamic parameters; (3) Based on the designed probe materials
different types of biosensors such as SERS biosensor
fluorescent biosensor
electrochemical biosensor and colorimetric biosensor are constructed
and their applications in food safety detection and biomedical diagnosis are explored.
生物传感器纳米探针智能高分子精准合成可控自组装
BiosensorsNanoprobesSmart polymersPrecise synthesisControllable assembly
Frutiger A.; Tanno A.; Hwu S.; Tiefenauer R. F.; Vörös J.; Nakatsuka N. Nonspecific binding-fundamental concepts and consequences for biosensing applications. Chem. Rev., 2021, 121(13), 8095-8160. doi:10.1021/acs.chemrev.1c00044http://dx.doi.org/10.1021/acs.chemrev.1c00044
Karawdeniya B. I.; Damry A. M.; Murugappan K.; Manjunath S.; Bandara Y. M. N. D. Y.; Jackson C. J.; Tricoli A.; Neshev D. Surface functionalization and texturing of optical metasurfaces for sensing applications. Chem. Rev., 2022, 122(19), 14990-15030. doi:10.1021/acs.chemrev.1c00990http://dx.doi.org/10.1021/acs.chemrev.1c00990
Zhang Z. W.; Ma P.; Ahmed R.; Wang J.; Akin D.; Soto F.; Liu B. F.; Li P. W.; Demirci U. Advanced point-of-care testing technologies for human acute respiratory virus detection. Adv. Mater., 2022, 34(1), e2103646. doi:10.1002/adma.202103646http://dx.doi.org/10.1002/adma.202103646
Anker J. N.; Hall W. P.; Lyandres O.; Shah N. C.; Zhao J.; van Duyne R. P. Biosensing with plasmonic nanosensors. Nat. Mater., 2008, 7(6), 442-453. doi:10.1038/nmat2162http://dx.doi.org/10.1038/nmat2162
Lee H. K.; Lee Y. H.; Koh C. S. L.; Phan-Quang G. C.; Han X. M.; Lay C. L.; Sim H. Y. F.; Kao Y. C.; An Q.; Ling X. Y. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev., 2019, 48(3), 731-756. doi:10.1039/c7cs00786hhttp://dx.doi.org/10.1039/c7cs00786h
Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E. J.; Boisen A.; Brolo A. G.; Choo J.; Cialla-May D.; Deckert V.; Fabris L.; Faulds K.; de Abajo F. J. G.; Goodacre R.; Graham D.; Haes A. J.; Haynes C. L.; Huck C.; Itoh T.; Käll M.; Kneipp J.; Kotov N. A.; Kuang H.; Le Ru E. C.; Lee H. K.; Li J. F.; Ling X. Y.; Maier S. A.; Mayerhöfer T.; Moskovits M.; Murakoshi K.; Nam J. M.; Nie S. M.; Ozaki Y.; Pastoriza-Santos I.; Perez-Juste J.; Popp J.; Pucci A.; Reich S.; Ren B.; Schatz G. C.; Shegai T.; Schlücker S.; Tay L. L.; Thomas K. G.; Tian Z. Q.; Van Duyne R. P.; Vo-Dinh T.; Wang Y.; Willets K. A.; Xu C. L.; Xu H. X.; Xu Y. K.; Yamamoto Y. S.; Zhao B.; Liz-Marzán L. M. Present and future of surface-enhanced Raman scattering. ACS Nano, 2020, 14(1), 28-117. doi:10.1021/acsnano.9b04224http://dx.doi.org/10.1021/acsnano.9b04224
Bell S. E. J.; Charron G.; Cortés E.; Kneipp J.; de la Chapelle M. L.; Langer J.; Procházka M.; Tran V.; Schlücker S. Towards reliable and quantitative surface-enhanced Raman scattering (SERS): from key parameters to good analytical practice. Angew. Chem. Int. Ed., 2020, 59(14), 5454-5462. doi:10.1002/anie.201908154http://dx.doi.org/10.1002/anie.201908154
Tian L.; Wang C.; Zhao H. W.; Sun F. W.; Dong H.; Feng K.; Wang P.; He G. K.; Li G. T. Rational approach to plasmonic dimers with controlled gap distance, symmetry, and capability of precisely hosting guest molecules in hotspot regions. J. Am. Chem. Soc., 2021, 143(23), 8631-8638. doi:10.1021/jacs.0c13377http://dx.doi.org/10.1021/jacs.0c13377
Nguyen Q. N.; Wang C. X.; Shang Y. X.; Janssen A.; Xia Y. N. Colloidal synthesis of metal nanocrystals: from asymmetrical growth to symmetry breaking. Chem. Rev., 2022, 10.1021/acs.chemrev.2c00468. doi:10.1021/acs.chemrev.2c00468http://dx.doi.org/10.1021/acs.chemrev.2c00468
Sun Y. G.; Xia Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298, 2176-2179. doi:10.1126/science.1077229http://dx.doi.org/10.1126/science.1077229
Rycenga M.; Cobley C. M.; Zeng J.; Li W. Y.; Moran C. H.; Zhang Q.; Qin D.; Xia Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111(6), 3669-3712. doi:10.1021/cr100275dhttp://dx.doi.org/10.1021/cr100275d
Zheng J. P.; Cheng X. Z.; Zhang H.; Bai X. P.; Ai R. Q.; Shao L.; Wang J. F. Gold nanorods: the most versatile plasmonic nanoparticles. Chem. Rev., 2021, 121(21), 13342-13453. doi:10.1021/acs.chemrev.1c00422http://dx.doi.org/10.1021/acs.chemrev.1c00422
Xia Y. N.; Xiong Y. J.; Lim B.; Skrabalak S. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed., 2009, 48(1), 60-103. doi:10.1002/anie.200802248http://dx.doi.org/10.1002/anie.200802248
Stuart M. A.; Huck W. T. S.; Genzer J.; Müller M.; Ober C.; Stamm M.; Sukhorukov G. B.; Szleifer I.; Tsukruk V. V.; Urban M.; Winnik F.; Zauscher S.; Luzinov I.; Minko S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9(2), 101-113. doi:10.1038/nmat2614http://dx.doi.org/10.1038/nmat2614
Lin X. Y.; Ye S. S.; Kong C. C.; Webb K.; Yi C. L.; Zhang S. Y.; Zhang Q.; Fourkas J. T.; Nie Z. H. Polymeric ligand-mediated regioselective bonding of plasmonic nanoplates and nanospheres. J. Am. Chem. Soc., 2020, 142(41), 17282-17286. doi:10.1021/jacs.0c08135http://dx.doi.org/10.1021/jacs.0c08135
Si K. J.; Chen Y.; Shi Q. Q.; Cheng W. L. Nanoparticle superlattices: the roles of soft ligands. Adv. Sci., 2018, 5(1), 1700179. doi:10.1002/advs.201700179http://dx.doi.org/10.1002/advs.201700179
Bishop K. J. M.; Wilmer C. E.; Soh S.; Grzybowski B. A. Nanoscale forces and their uses in self-assembly. Small, 2009, 5(14), 1600-1630. doi:10.1002/smll.200900358http://dx.doi.org/10.1002/smll.200900358
Yang X.; Yang M. X.; Pang B.; Vara M.; Xia Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev., 2015, 115(19), 10410-10488. doi:10.1021/acs.chemrev.5b00193http://dx.doi.org/10.1021/acs.chemrev.5b00193
Zhang H.; Jin M. S.; Xia Y. N. Noble-metal nanocrystals with concave surfaces: synthesis and applications. Angew. Chem. Int. Ed., 2012, 51(31), 7656-7673. doi:10.1002/anie.201201557http://dx.doi.org/10.1002/anie.201201557
Skrabalak S. E. Symmetry in seeded metal nanocrystal growth. Acc. Mater. Res., 2021, 2(8), 621-629. doi:10.1021/accountsmr.1c00077http://dx.doi.org/10.1021/accountsmr.1c00077
Heuer-Jungemann A.; Feliu N.; Bakaimi I.; Hamaly M.; Alkilany A.; Chakraborty I.; Masood A.; Casula M. F.; Kostopoulou A.; Oh E.; Susumu K.; Stewart M. H.; Medintz I. L.; Stratakis E.; Parak W. J.; Kanaras A. G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev., 2019, 119(8), 4819-4880. doi:10.1021/acs.chemrev.8b00733http://dx.doi.org/10.1021/acs.chemrev.8b00733
Patzke G. R.; Krumeich F.; Nesper R. Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed., 2002, 41(14), 2446-2461. doi:10.1002/1521-3773(20020715)41:14<2446::aid-anie2446>3.0.co;2-khttp://dx.doi.org/10.1002/1521-3773(20020715)41:14<2446::aid-anie2446>3.0.co;2-k
Huang Y. J.; Kim D. H. Light-controlled synthesis of gold nanoparticles using a rigid, photoresponsive surfactant. Nanoscale, 2012, 4(20), 6312-6317. doi:10.1039/c2nr31717fhttp://dx.doi.org/10.1039/c2nr31717f
Yoon Y. J.; Chang Y. J.; Zhang S. G.; Zhang M.; Pan S.; He Y. J.; Lin C. H.; Yu S. T.; Chen Y. H.; Wang Z. W.; Ding Y.; Jung J.; Thadhani N.; Tsukruk V. V.; Kang Z. T.; Lin Z. Q. Enabling tailorable optical properties and markedly enhanced stability of perovskite quantum dots by permanently ligating with polymer hairs. Adv. Mater., 2019, 31(32), 1901602. doi:10.1002/adma.201901602http://dx.doi.org/10.1002/adma.201901602
Dai L. W.; Song L. P.; Huang Y. J.; Zhang L.; Lu X. F.; Zhang J. W.; Chen T. Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in the near-infrared region and high performance surface-enhanced Raman scattering. Langmuir, 2017, 33(22), 5378-5384. doi:10.1021/acs.langmuir.7b00097http://dx.doi.org/10.1021/acs.langmuir.7b00097
Mei R. C.; Wang Y. Q.; Liu W. H.; Chen L. X. Lipid bilayer-enabled synthesis of waxberry-like core-fluidic satellite nanoparticles: toward ultrasensitive surface-enhanced Raman scattering tags for bioimaging. ACS Appl. Mater. Interfaces, 2018, 10(28), 23605-23616. doi:10.1021/acsami.8b06253http://dx.doi.org/10.1021/acsami.8b06253
Jia J.; Liu G. Y.; Xu W. J.; Tian X. L.; Li S. B.; Han F.; Feng Y. H.; Dong X. C.; Chen H. Y. Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II window. Angew. Chem. Int. Ed., 2020, 59(34), 14443-14448. doi:10.1002/anie.202000474http://dx.doi.org/10.1002/anie.202000474
Luo X. N.; Wang X. Y.; Zhang L. L.; Song L. P.; Sun Z. W.; Zhao Y.; Su F. M.; Huang Y. J. Engineering miniature gold nanorods with tailorable plasmonic wavelength in NIR region via ternary surfactants mediated growth. Nano Res., 2022, Doi: 10.1007/s12274-022-5214-5.http://dx.doi.org/10.1007/s12274-022-5214-5.
Ye X. C.; Zheng C.; Chen J.; Gao Y. Z.; Murray C. B. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett., 2013, 13(2), 765-771. doi:10.1021/nl304478hhttp://dx.doi.org/10.1021/nl304478h
Ye X. C.; Jin L. H.; Caglayan H.; Chen J.; Xing G. Z.; Zheng C.; Doan-Nguyen V.; Kang Y. J.; Engheta N.; Kagan C. R.; Murray C. B. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano, 2012, 6(3), 2804-2817. doi:10.1021/nn300315jhttp://dx.doi.org/10.1021/nn300315j
Jiang L.; Chen X. D.; Lu N.; Chi L. F. Spatially confined assembly of nanoparticles. Acc. Chem. Res., 2014, 47(10), 3009-3017. doi:10.1021/ar500196rhttp://dx.doi.org/10.1021/ar500196r
Cai Y. Y.; Choi Y. C.; Kagan C. R. Chemical and physical properties of photonic noble-metal nanomaterials. Adv. Mater., 2022, 2108104. doi:10.1002/adma.202108104http://dx.doi.org/10.1002/adma.202108104
Zhang N. N.; Shen X. X.; Liu K.; Nie Z. H.; Kumacheva E. Polymer-tethered nanoparticles: from surface engineering to directional self-assembly. Acc. Chem. Res., 2022, 55(11), 1503-1513. doi:10.1021/acs.accounts.2c00066http://dx.doi.org/10.1021/acs.accounts.2c00066
Zhang L.; Dai L. W.; Rong Y.; Liu Z. Z.; Tong D. Y.; Huang Y. J.; Chen T. Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS. Langmuir, 2015, 31(3), 1164-1171. doi:10.1021/la504365bhttp://dx.doi.org/10.1021/la504365b
Fan X. L.; Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem. Soc. Rev., 2022, 51(10), 4023-4074. doi:10.1039/d2cs00112hhttp://dx.doi.org/10.1039/d2cs00112h
Kuzyk A.; Schreiber R.; Fan Z. Y.; Pardatscher G.; Roller E. M.; Högele A.; Simmel F. C.; Govorov A. O.; Liedl T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature, 2012, 483(7389), 311-314. doi:10.1038/nature10889http://dx.doi.org/10.1038/nature10889
Lee S.; Sim K.; Moon S. Y.; Choi J.; Jeon Y.; Nam J. M.; Park S. J. Controlled assembly of plasmonic nanoparticles: From static to dynamic nanostructures. Adv. Mater., 2021, 33(46), 2007668. doi:10.1002/adma.202007668http://dx.doi.org/10.1002/adma.202007668
Yi C. L.; Liu H.; Zhang S. Y.; Yang Y. Q.; Zhang Y.; Lu Z. Y.; Kumacheva E.; Nie Z. H. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science, 2020, 369(6509), 1369-1374. doi:10.1126/science.aba8653http://dx.doi.org/10.1126/science.aba8653
Lukach A.; Liu K.; Therien-Aubin H.; Kumacheva E. Controlling the degree of polymerization, bond lengths, and bond angles of plasmonic polymers. J. Am. Chem. Soc., 2012, 134(45), 18853-18859. doi:10.1021/ja309475ehttp://dx.doi.org/10.1021/ja309475e
Lu J.; Xue Y.; Bernardino K.; Zhang N. N.; Gomes W. R.; Ramesar N. S.; Liu S. H.; Hu Z.; Sun T. M.; de Moura A. F.; Kotov N. A.; Liu K. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science, 2021, 371(6536), 1368-1374. doi:10.1126/science.abd8576http://dx.doi.org/10.1126/science.abd8576
Rong Y.; Song L. P.; Si P.; Zhang L.; Lu X. F.; Zhang J. W.; Nie Z. H.; Huang Y. J.; Chen T. Macroscopic assembly of gold nanorods into superstructures with controllable orientations by anisotropic affinity interaction. Langmuir, 2017, 33(48), 13867-13873. doi:10.1021/acs.langmuir.7b03538http://dx.doi.org/10.1021/acs.langmuir.7b03538
Nie H. L.; Dou X.; Tang Z. H.; Jang H. D.; Huang J. X. High-yield spreading of water-miscible solvents on water for Langmuir-blodgett assembly. J. Am. Chem. Soc., 2015, 137(33), 10683-10688. doi:10.1021/jacs.5b06052http://dx.doi.org/10.1021/jacs.5b06052
Song L. P.; Huang Y. J.; Nie Z. H.; Chen T. Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. Nanoscale, 2020, 12(14), 7433-7460. doi:10.1039/c9nr09420bhttp://dx.doi.org/10.1039/c9nr09420b
Fan B. J.; Xiong J.; Zhang Y. Y.; Gong C. X.; Li F.; Meng X. C.; Hu X. T.; Yuan Z. Y.; Wang F. Y.; Chen Y. W. A bionic interface to suppress the coffee-ring effect for reliable and flexible perovskite modules with a near-90% yield rate. Adv. Mater., 2022, 34(29), 2201840. doi:10.1002/adma.202201840http://dx.doi.org/10.1002/adma.202201840
Li P. H.; Li Y.; Zhou Z. K.; Tang S. Y.; Yu X. F.; Xiao S.; Wu Z. Z.; Xiao Q. L.; Zhao Y. T.; Wang H. Y.; Chu P. K. Evaporative self-assembly of gold nanorods into macroscopic 3D plasmonic superlattice arrays. Adv. Mater., 2016, 28(13), 2511-2517. doi:10.1002/adma.201505617http://dx.doi.org/10.1002/adma.201505617
Li F.; Wang K.; Deng N. X.; Xu J. P.; Yi M. D.; Xiong B. J.; Zhu J. T. Self-assembly of polymer end-tethered gold nanorods into two-dimensional arrays with tunable tilt structures. ACS Appl. Mater. Interfaces, 2021, 13(5), 6566-6574. doi:10.1021/acsami.0c22468http://dx.doi.org/10.1021/acsami.0c22468
Lu X. F.; Huang Y. J.; Liu B. Q.; Zhang L.; Song L. P.; Zhang J. W.; Zhang A. F.; Chen T. Light-controlled shrinkage of large-area gold nanoparticle monolayer film for tunable SERS activity. Chem. Mater., 2018, 30(6), 1989-1997. doi:10.1021/acs.chemmater.7b05176http://dx.doi.org/10.1021/acs.chemmater.7b05176
Song L. P.; Chen J.; Xu B. B.; Huang Y. J. Flexible plasmonic biosensors for healthcare monitoring: progress and prospects. ACS Nano, 2021, 15(12), 18822-18847. doi:10.1021/acsnano.1c07176http://dx.doi.org/10.1021/acsnano.1c07176
Pieranski P. Two-dimensional interfacial colloidal crystals. Phys. Rev. Lett., 1980, 45(7), 569-572. doi:10.1103/physrevlett.45.569http://dx.doi.org/10.1103/physrevlett.45.569
Song L. P.; Qiu N. X.; Huang Y. J.; Cheng Q.; Yang Y. P.; Lin H.; Su F. M.; Chen T. Macroscopic orientational gold nanorods monolayer film with excellent photothermal anticounterfeiting performance. Adv. Opt. Mater., 2020, 8(18), 1902082. doi:10.1002/adom.201902082http://dx.doi.org/10.1002/adom.201902082
Schulz F.; Pavelka O.; Lehmkühler F.; Westermeier F.; Okamura Y.; Mueller N. S.; Reich S.; Lange H. Structural order in plasmonic superlattices. Nat. Commun., 2020, 11(1), 3821. doi:10.1038/s41467-020-17632-4http://dx.doi.org/10.1038/s41467-020-17632-4
Shin D. I.; Yoo S. S.; Park S. H.; Lee G.; Bae W. K.; Kwon S. J.; Yoo P. J.; Yi G. R. Percolated plasmonic superlattices of nanospheres with 1 nm-level gap as high-index metamaterials. Adv. Mater., 2022, 34(35), 2203942. doi:10.1002/adma.202203942http://dx.doi.org/10.1002/adma.202203942
Liu Y. Y.; Fan B.; Shi Q. Q.; Dong D. S.; Gong S.; Zhu B. W.; Fu R. F.; Thang S. H.; Cheng W. L. Covalent-cross-linked plasmene nanosheets. ACS Nano, 2019, 13(6), 6760-6769. doi:10.1021/acsnano.9b01343http://dx.doi.org/10.1021/acsnano.9b01343
Song L. P.; Xu B. B.; Cheng Q.; Wang X. Y.; Luo X. N.; Chen X.; Chen T.; Huang Y. J. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal lift-on thin film technology. Sci. Adv., 2021, 7(52), eabk2852. doi:10.1126/sciadv.abk2852http://dx.doi.org/10.1126/sciadv.abk2852
Cheng Q.; Song L. P.; Lin H.; Yang Y. P.; Huang Y. J.; Su F. M.; Chen T. Free-standing 2D Janus gold nanoparticles monolayer film with tunable bifacial morphologies via the asymmetric growth at air-liquid interface. Langmuir, 2020, 36(1), 250-256. doi:10.1021/acs.langmuir.9b03189http://dx.doi.org/10.1021/acs.langmuir.9b03189
Chen L. M.; Huang Y. J.; Song L. P.; Yin W. L.; Hou L. X.; Liu X. Q.; Chen T. Biofriendly and regenerable emotional monitor from interfacial ultrathin 2D PDA/AuNPs cross-linking films. ACS Appl. Mater. Interfaces, 2019, 11(39), 36259-36269. doi:10.1021/acsami.9b11918http://dx.doi.org/10.1021/acsami.9b11918
Lin H.; Song L. P.; Huang Y. J.; Cheng Q.; Yang Y. P.; Guo Z. Y.; Su F. M.; Chen T. Macroscopic Au@PANI core/shell nanoparticle superlattice monolayer film with dual-responsive plasmonic switches. ACS Appl. Mater. Interfaces, 2020, 12(9), 11296-11304. doi:10.1021/acsami.0c01983http://dx.doi.org/10.1021/acsami.0c01983
Liu B. Q.; Lu X. F.; Qiao Z.; Song L. P.; Cheng Q.; Zhang J. W.; Zhang A. F.; Huang Y. J.; Chen T. pH and temperature dual-responsive plasmonic switches of gold nanoparticle monolayer film for multiple anticounterfeiting. Langmuir, 2018, 34(43), 13047-13056. doi:10.1021/acs.langmuir.8b02989http://dx.doi.org/10.1021/acs.langmuir.8b02989
Rohaizad N.; Mayorga-Martinez C. C.; Fojtu M.; Latiff N. M.; Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev., 2021, 50(1), 619-657. doi:10.1039/d0cs00150chttp://dx.doi.org/10.1039/d0cs00150c
Chen J. M.; Huang Y. J.; Kannan P.; Zhang L.; Lin Z. Y.; Zhang J. W.; Chen T.; Guo L. H. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal. Chem., 2016, 88(4), 2149-2155. doi:10.1021/acs.analchem.5b03735http://dx.doi.org/10.1021/acs.analchem.5b03735
Zheng X. Y.; Ye J. Z.; Chen W. W.; Wang X. Y.; Li J. H.; Su F. M.; Ding C. P.; Huang Y. J. Ultrasensitive sandwich-type SERS-biosensor-based dual plasmonic superstructure for detection of tacrolimus in patients. ACS Sens., 2022, 7(10), 3126-3134. doi:10.1021/acssensors.2c01603http://dx.doi.org/10.1021/acssensors.2c01603
Liu H. Q.; Zeng J. Y.; Song L. P.; Zhang L. L.; Chen Z. H.; Li J. H.; Xiao Z. D.; Su F. M.; Huang Y. J. Etched-spiky Au@Ag plasmonic-superstructure monolayer films for triple amplification of surface-enhanced Raman scattering signals. Nanoscale Horiz., 2022, 7(5), 554-561. doi:10.1039/d2nh00023ghttp://dx.doi.org/10.1039/d2nh00023g
Nguyen L. B. T.; Leong Y. X.; Koh C. S. L.; Leong S. X.; Boong S. K.; Sim H. Y. F.; Phan-Quang G. C.; Phang I. Y.; Ling X. Y. Inducing ring complexation for efficient capture and detection of small gaseous molecules using SERS for environmental surveillance. Angew. Chem. Int. Ed., 2022, 61(33), e202207447. doi:10.1002/anie.202207447http://dx.doi.org/10.1002/anie.202207447
Koh C. S. L.; Sim H. Y. F.; Leong S. X.; Boong S. K.; Chong C.; Ling X. Y. Plasmonic nanoparticle-metal-organic framework (NP-MOF) nanohybrid platforms for emerging plasmonic applications. ACS Mater. Lett., 2021, 3(5), 557-573. doi:10.1021/acsmaterialslett.1c00047http://dx.doi.org/10.1021/acsmaterialslett.1c00047
Son J.; Kim G. H.; Lee Y.; Lee C.; Cha S.; Nam J. M. Toward quantitative surface-enhanced Raman scattering with plasmonic nanoparticles: Multiscale view on heterogeneities in particle morphology, surface modification, interface, and analytical protocols. J. Am. Chem. Soc., 2022, 144(49), 22337-22351. doi:10.1021/jacs.2c05950http://dx.doi.org/10.1021/jacs.2c05950
Ding Q. Q.; Wang J.; Chen X. Y.; Liu H.; Li Q. J.; Wang Y. L.; Yang S. K. Quantitative and sensitive SERS platform with analyte enrichment and filtration function. Nano Lett., 2020, 20(10), 7304-7312. doi:10.1021/acs.nanolett.0c02683http://dx.doi.org/10.1021/acs.nanolett.0c02683
Lim D. K.; Jeon K. S.; Kim H. M.; Nam J. M.; Suh Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater., 2010, 9(1), 60-67. doi:10.1038/nmat2596http://dx.doi.org/10.1038/nmat2596
Liu H. L.; Yang Z. L.; Meng L. Y.; Sun Y. D.; Wang J.; Yang L. B.; Liu J. H.; Tian Z. Q. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J. Am. Chem. Soc., 2014, 136(14), 5332-5341. doi:10.1021/ja501951vhttp://dx.doi.org/10.1021/ja501951v
Ge M. H.; Li P.; Zhou G. L.; Chen S. Y.; Han W.; Qin F.; Nie Y. M.; Wang Y. X.; Qin M.; Huang G. Y.; Li S. F.; Wang Y. T.; Yang L. B.; Tian Z. Q. General surface-enhanced Raman spectroscopy method for actively capturing target molecules in small gaps. J. Am. Chem. Soc., 2021, 143(20), 7769-7776. doi:10.1021/jacs.1c02169http://dx.doi.org/10.1021/jacs.1c02169
Mogera U.; Guo H.; Namkoong M.; Rahman M. S.; Nguyen T.; Tian L. M. Wearable plasmonic paper-based microfluidics for continuous sweat analysis. Sci. Adv., 2022, 8(12), eabn1736. doi:10.1126/sciadv.abn1736http://dx.doi.org/10.1126/sciadv.abn1736
Wang Y. L.; Zhao C.; Wang J. J.; Luo X.; Xie L. J.; Zhan S. J.; Kim J.; Wang X. Z.; Liu X. J.; Ying Y. B. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci. Adv., 2021, 7(4), eabe4553. doi:10.1126/sciadv.abe4553http://dx.doi.org/10.1126/sciadv.abe4553
Jia P. D.; Ding C. P.; Sun Z. W.; Song L. P.; Zhang D.; Yan Z. J.; Zhang Z. L.; Su F. M.; Mostafa A. A.; Huang Y. J. DNA precisely regulated Au nanorods/Ag2S quantum dots satellite structure for ultrasensitive detection of prostate cancer biomarker. Sens. Actuat. B Chem., 2021, 347, 130585. doi:10.1016/j.snb.2021.130585http://dx.doi.org/10.1016/j.snb.2021.130585
Hou S.; Chen Y. H.; Lu D. R.; Xiong Q. R.; Lim Y.; Duan H. W. A self-assembled plasmonic substrate for enhanced fluorescence resonance energy transfer. Adv. Mater., 2020, 32(8), 1906475. doi:10.1002/adma.201906475http://dx.doi.org/10.1002/adma.201906475
Kannan P.; Chen J.; Su F. M.; Guo Z. Y.; Huang Y. J. Faraday-cage-type electrochemiluminescence immunoassay: a rise of advanced biosensing strategy. Anal. Chem., 2019, 91(23), 14792-14802. doi:10.1021/acs.analchem.9b04503http://dx.doi.org/10.1021/acs.analchem.9b04503
Wang T.; Lin H.; Wu Y. B.; Guo Z. Y.; Hao T. T.; Hu Y. F.; Wang S.; Huang Y. J.; Su X. R. Fast scan voltammetry-derived ultrasensitive Faraday cage-type electrochemical immunoassay for large-size targets. Biosens. Bioelectron., 2020, 163, 112277. doi:10.1016/j.bios.2020.112277http://dx.doi.org/10.1016/j.bios.2020.112277
Li M.; Ding C. P.; Jia P. D.; Guo L. H.; Wang S.; Guo Z. Y.; Su F. M.; Huang Y. J. Semi-quantitative detection of p-Aminophenol in real samples with colorfully naked-eye assay. Sens. Actuat. B Chem., 2021, 334, 129604. doi:10.1016/j.snb.2021.129604http://dx.doi.org/10.1016/j.snb.2021.129604
Guo Z. Y.; Jia Y. R.; Song X. X.; Lu J.; Lu X. F.; Liu B. Q.; Han J. J.; Huang Y. J.; Zhang J. W.; Chen T. Giant gold nanowire vesicle-based colorimetric and SERS dual-mode immunosensor for ultrasensitive detection of vibrio parahemolyticus. Anal. Chem., 2018, 90(10), 6124-6130. doi:10.1021/acs.analchem.8b00292http://dx.doi.org/10.1021/acs.analchem.8b00292
Elghanian R.; Storhoff J. J.; Mucic R. C.; Letsinger R. L.; Mirkin C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329), 1078-1081. doi:10.1126/science.277.5329.1078http://dx.doi.org/10.1126/science.277.5329.1078
0
Views
63
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution