浏览全部资源
扫码关注微信
1.山东理工大学化学化工学院 淄博 255049
2.中国科学院长春应用化学研究所 高分子复合材料工程国家重点实验室 长春 130022
Jian-ying Zhao, E-mail: zhaojianying@sdut.edu.cn
Lian-xun Gao, E-mail:lxgao@ciac.ac.cn
Published:20 August 2023,
Published Online:14 April 2023,
Received:18 January 2023,
Accepted:27 February 2023
扫 描 看 全 文
岳靖宇,郇恒建,苏传祥等.两步封端法提高聚酰亚胺薄膜的光学性能[J].高分子学报,2023,54(08):1229-1240.
Yue Jing-yu,Huan Heng-jian,Su Chuan-xiang,et al.The Optical Properties of Polyimide Films Improved by Two-step End-capping Method[J].ACTA POLYMERICA SINICA,2023,54(08):1229-1240.
岳靖宇,郇恒建,苏传祥等.两步封端法提高聚酰亚胺薄膜的光学性能[J].高分子学报,2023,54(08):1229-1240. DOI: 10.11777/j.issn1000-3304.2023.23017.
Yue Jing-yu,Huan Heng-jian,Su Chuan-xiang,et al.The Optical Properties of Polyimide Films Improved by Two-step End-capping Method[J].ACTA POLYMERICA SINICA,2023,54(08):1229-1240. DOI: 10.11777/j.issn1000-3304.2023.23017.
聚酰亚胺薄膜容易呈现特征性黄色,主要原因是其高密度芳香环导致的电子转移络合物(CTC)效应,本文研究发现聚酰胺酸亚胺化过程中所生成的含氮氧化物、偶氮生色团及蒽醌有色结构也对聚酰亚胺薄膜的光学性质有重要影响. 将4
4-二氨基二苯醚(ODA)与3
3'
4
4'-联苯四甲酸二酐(BPDA)进行缩聚反应制备聚酰胺酸后,加入二酐单体封端聚酰胺酸树脂(PAA)的末端氨基,以防止其端氨基氧化或偶联为―N=O和―N=N―生色团;而后再加入乙二醇封端聚酰胺酸树脂的末端酐基,以防止末端酐基与PAA二胺单体链段生成有色蒽醌结构,并通过热亚胺化法制得聚酰亚胺薄膜. 实验结果表明,封端的与未封端的聚酰亚胺薄膜相比,其紫外截止波长(
λ
cut
)左移,颜色变浅,在450 nm处的紫外透过率由17.0%提高到39.0%,最高透过率
T
max
从94.5%提高到99.5%,并使封端聚酰亚胺薄膜机械性能和耐热性相应增强,所以两步封端法可有效提高聚酰亚胺薄膜的光学性能.
The NO
x
/azo chromophore and the colored anthraquinone structures are important reasons for coloring PI except the well-known charge trasfer complex (CTC) effects
the polyamide acid (PAA) was synthesized from 3
3'
4
4'-biphenyl tetracarboxylic dianhydride (BPDA)/4
4'-oxydianiline (ODA) and the polyimide film was prepared by thermal imidization. The BPDA were used as blockers to cap the residual amino of PAA
and the amino groups were prevented from producing the chromophore; the ethylene glycol was used to cap the terminal anhydride group of PAA to prevente the formation of the colored anthraquinone units
which was produced from the diamine segments substituted by the terminal anhydride groups
then the light color and high transmittance polyimide (PI) films were obtained. The test results show that the cutoff wavelength of the capped PI films shifted to the left
the color of PI films becomes lighter
the UV transmittance at 450 nm increased from 17% to 39%. The maximum transmittance was up to 99.5%
the thermal and mechanical properties of the capped polyimide films were also improved. So
the two-step end-capping method has universal applicability to improve the optical properties of polyimide films.
无色透明聚酰亚胺电子转移络合物两步封端热亚胺化
Colorless polyimideCharge transfer complexEnd-cappingThermal imidization
Lee D. H.; Yun H. D.; Jung E. D.; Chu J. H.; Nam Y. S.; Song S.; Seok S. H.; Song M. H.; Kwon S. Y. Ultrathin graphene intercalation in PEDOT: PSS/colorless polyimide-based transparent electrodes for enhancement of optoelectronic performance and operational stability of organic devices. ACS Appl. Mater. Interfaces, 2019, 11(23), 21069-21077. doi:10.1021/acsami.9b04118http://dx.doi.org/10.1021/acsami.9b04118
Lian R. H.; Lei X. F.; Xue S. Y.; Chen Y. H.; Zhang Q. Y. Janus polyimide films with outstanding AO resistance, good optical transparency and high mechanical strength. Appl. Surf. Sci., 2021, 535, 147654. doi:10.1016/j.apsusc.2020.147654http://dx.doi.org/10.1016/j.apsusc.2020.147654
Qin R.; Peng L. S.; Deng H.; Liu Y.; Liu X. Y. Enhancing thermal dimensional stability of polyimide composite films through in situ constructing highly interfacial grafting degree to constrain early chain relaxation. Compos. B Eng., 2021, 216, 108829. doi:10.1016/j.compositesb.2021.108829http://dx.doi.org/10.1016/j.compositesb.2021.108829
Liu T. Q.; Zheng F.; Ma X. R.; Ding T. M.; Chen S. S.; Jiang W.; Zhang S. Y.; Lu Q. H. High heat-resistant polyimide films containing quinoxaline moiety for flexible substrate applications. Polymer, 2020, 209, 122963. doi:10.1016/j.polymer.2020.122963http://dx.doi.org/10.1016/j.polymer.2020.122963
Zuo H. T.; Qian G. T.; Li H. B.; Gan F.; Fang Y. T.; Li X. T.; Dong J.; Zhao X.; Zhang Q. H. Reduced coefficient of linear thermal expansion for colorless and transparent polyimide by introducing rigid-rod amide units: synthesis and properties. Polym. Chem., 2022, 13(20), 2999-3008. doi:10.1039/d2py00062hhttp://dx.doi.org/10.1039/d2py00062h
Su C. X.; Liu P. J.; Yue J. Y.; Huan H. J.; Yang Z. H.; Yang K.; Guo H. Q.; Zhao J. Y. High-transparency and colorless polyimide film prepared by inhibiting the formation of chromophores. Polymers, 2022, 14(19), 4242. doi:10.3390/polym14194242http://dx.doi.org/10.3390/polym14194242
朱德帅, 赵剑英, 杨正慧, 郭海泉, 高连勋. 基于多层结构设计的高储能密度氧化石墨烯/聚酰亚胺复合材料. 高等学校化学学报, 2021, 42(8), 2694-2700. doi:10.7503/cjcu20200882http://dx.doi.org/10.7503/cjcu20200882
Zhu D. S.; Yang Z. H.; Zhao J. Y.; Guo H. Q.; Gao L. X. Ultrahigh energy density of polymer nanocomposites containing electrostatically self-assembled graphene oxide and hydrotalcite nanosheets. Ceram. Int., 2021, 47(23), 33766-33774. doi:10.1016/j.ceramint.2021.08.288http://dx.doi.org/10.1016/j.ceramint.2021.08.288
董玥, 董霄, 朱德兆, 杨延翔, 罗琛, 李阳, 李锦山. 聚酰亚胺发展概况与应用展望. 中国塑料, 2022, 36(9), 85-95.
Tian Y. Y.; Luo L. B.; Yang Q. Q.; Zhang L. J.; Wang M.; Wu D. F.; Wang X.; Liu X. Y. Construction of stable hydrogen bonds at high temperature for preparation of polyimide films with ultralow coefficient of thermal expansion and high Tg. Polymer, 2020, 188, 122100. doi:10.1016/j.polymer.2019.122100http://dx.doi.org/10.1016/j.polymer.2019.122100
Ma P. C.; Dai C. T.; Wang H. Z.; Li Z. K.; Liu H. B.; Li W. M.; Yang C. L. A review on high temperature resistant polyimide films: heterocyclic structures and nanocomposites. Compos. Commun., 2019, 16, 84-93. doi:10.1016/j.coco.2019.08.011http://dx.doi.org/10.1016/j.coco.2019.08.011
Yi C. H.; Li W. M.; Shi S.; He K.; Ma P. C.; Chen M.; Yang C. L. High-temperature-resistant and colorless polyimide: preparations, properties, and applications. Sol. Energy, 2020, 195, 340-354. doi:10.1016/j.solener.2019.11.048http://dx.doi.org/10.1016/j.solener.2019.11.048
Bae W. J.; Kovalev M. K.; Kalinina F.; Kim M.; Cho C. Towards colorless polyimide/silica hybrids for flexible substrates. Polymer, 2016, 105, 124-132. doi:10.1016/j.polymer.2016.10.023http://dx.doi.org/10.1016/j.polymer.2016.10.023
Ni H. J.; Liu J. G.; Wang Z. H.; Yang S. Y. A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J. Ind. Eng. Chem., 2015, 28, 16-27. doi:10.1016/j.jiec.2015.03.013http://dx.doi.org/10.1016/j.jiec.2015.03.013
Wang Y. W.; Chen W. C. Synthesis, properties, and anti-reflective applications of new colorless polyimide-inorganic hybrid optical materials. Compos. Sci. Technol., 2010, 70(5), 769-775. doi:10.1016/j.compscitech.2010.01.008http://dx.doi.org/10.1016/j.compscitech.2010.01.008
Yang Z. H.; Guo H. Q.; Kang C. Q.; Gao L. X. Synthesis and characterization of amide-bridged colorless polyimide films with low CTE and high optical performance for flexible OLED displays. Polym. Chem., 2021, 12(37), 5364-5376. doi:10.1039/d1py00762ahttp://dx.doi.org/10.1039/d1py00762a
Mailis S.; Reekie L.; Pissadakis S.; Barrington S. J.; Eason R. W.; Vainos N. A.; Grivas C. Large photoinduced refractive index changes in pulsed-laser-deposited lead germanate glass waveguides with controllable refractive index sign change. Appl. Phys. A Mater. Sci. Process., 1999, 69(7), S671-S674. doi:10.1007/s003390051502http://dx.doi.org/10.1007/s003390051502
何思呈, 黄杰. 可溶性无色透明FFDA-PMDA-ODA共聚聚酰亚胺的合成与性能. 广州化工, 2017, 45(1), 36-39. doi:10.3969/j.issn.1001-9677.2017.01.014http://dx.doi.org/10.3969/j.issn.1001-9677.2017.01.014
Chang H. C.; Chang S. L.; Lin C. H.; Chen S. W. Design and synthesis of unsymmetric phosphinated diamines for high-Tg, transparent polyimides. Polymer, 2012, 53(8), 1651-1658. doi:10.1016/j.polymer.2012.02.037http://dx.doi.org/10.1016/j.polymer.2012.02.037
Xiao P.; He X. J.; Zheng F.; Lu Q. H. Super-heat resistant, transparent and low dielectric polyimides based on spirocyclic bisbenzoxazole diamines with Tg>450 °C. Polym. Chem., 2022, 13(24), 3660-3669. doi:10.1039/d2py00513ahttp://dx.doi.org/10.1039/d2py00513a
Yan X. Y.; Dai F. N.; Ke Z.; Yan K. G.; Chen C. H.; Qian G. T.; Li H. Synthesis of colorless polyimides with high Tg from asymmetric twisted benzimidazole diamines. Eur. Polym. J., 2022, 164, 110975. doi:10.1016/j.eurpolymj.2021.110975http://dx.doi.org/10.1016/j.eurpolymj.2021.110975
Xia X. J.; Zhang S. Y.; He X. J.; Zheng F.; Lu Q. H. Molecular necklace strategy for enhancing modulus and toughness of colorless transparent polyimides for cover window application. Polymer, 2022, 259, 125358. doi:10.1016/j.polymer.2022.125358http://dx.doi.org/10.1016/j.polymer.2022.125358
蒋建军, 姜鹏飞, 鲁峰, 屠国力. 新型三联苯刚性二胺合成及透明聚酰亚胺应用. 光电技术应用, 2020, 35(2), 49-55. doi:10.3969/j.issn.1673-1255.2020.02.010http://dx.doi.org/10.3969/j.issn.1673-1255.2020.02.010
陈颖, 黄杰, 张文祥, 钟姝, 张步峰, 汤海涛. 新型无色透明聚酰亚胺薄膜的制备与性能研究. 绝缘材料, 2018, 51(8), 1-5.
Zuo H. T.; Gan F.; Dong J.; Zhang P.; Zhao X.; Zhang Q. H. Highly transparent and colorless polyimide film with low dielectric constant by introducing meta-substituted structure and trifluoromethyl groups. Chinese J. Polym. Sci., 2021, 39(4), 455-464. doi:10.1007/s10118-021-2514-2http://dx.doi.org/10.1007/s10118-021-2514-2
Wu Q.; Ma X. R.; Zheng F.; Lu X. M.; Lu Q. H. High performance transparent polyimides by controlling steric hindrance of methyl side groups. Eur. Polym. J., 2019, 120, 109235. doi:10.1016/j.eurpolymj.2019.109235http://dx.doi.org/10.1016/j.eurpolymj.2019.109235
Xu Y. Z.; Zhang M. R.; Pang Y. Y.; Zheng T. Y.; Zhang L.; Wang Z.; Yan J. L. Colorless polyimides from 2,2',3,3'- biphenyltetracarboxylic dianhydride and fluorinated diamines. Eur. Polym. J., 2022, 179, 111528. doi:10.1016/j.eurpolymj.2022.111528http://dx.doi.org/10.1016/j.eurpolymj.2022.111528
Wang C. Y.; Chen W. T.; Chen Y. Y.; Zhao X. Y.; Li J.; Ren Q. Synthesis and properties of new fluorene-based polyimides containing trifluoromethyl and isopropyl substituents. Mater. Chem. Phys., 2014, 144(3), 553-559. doi:10.1016/j.matchemphys.2014.01.039http://dx.doi.org/10.1016/j.matchemphys.2014.01.039
Zuo H. T.; Chen Y. T.; Qian G. T.; Yao F.; Li H. B.; Dong J.; Zhao X.; Zhang Q. H. Effect of simultaneously introduced bulky pendent group and amide unit on optical transparency and dimensional stability of polyimide film. Eur. Polym. J., 2022, 173, 111317. doi:10.1016/j.eurpolymj.2022.111317http://dx.doi.org/10.1016/j.eurpolymj.2022.111317
韩龙, 李静静, 窦垚, 奚桢浩, 郭旭虹, 王杰. 共缩聚法制备含芴大侧基无色透明聚酰亚胺薄膜及其性能. 功能高分子学报, 2022, 35(4), 365-371.
杨洋, 张燕, 职欣心, 皇甫梦鸽, 姜岗岚, 吴琳, 刘金刚. 高脂环含量低介电常数聚酰亚胺薄膜的制备与性能研究. 绝缘材料, 2020, 53(10), 44-50.
Zhuang Y. B.; Seong J. G.; Lee Y. M. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci., 2019, 92, 35-88. doi:10.1016/j.progpolymsci.2019.01.004http://dx.doi.org/10.1016/j.progpolymsci.2019.01.004
Hu X. F.; Mu H. L.; Wang Y. X.; Wang Z.; Yan J. L. Colorless polyimides derived from isomeric dicyclohexyl-tetracarboxylic dianhydrides for optoelectronic applications. Polymer, 2018, 134, 8-19. doi:10.1016/j.polymer.2017.11.042http://dx.doi.org/10.1016/j.polymer.2017.11.042
Li X. H.; Wang M. Y.; Mushtaq N.; Chen G. F.; Li G. H.; Fang X. Z.; Zhang A. J. Colorless polyimide films with low birefringence and retardation: synthesis and characterization. Polymer, 2023, 265, 125579. doi:10.1016/j.polymer.2022.125579http://dx.doi.org/10.1016/j.polymer.2022.125579
Lao H. J.; Mushtaq N.; Chen G. F.; Wang B. Y.; Ba Y. X.; Fang X. Z. Synthesis and properties of transparent random and multi-block polyamide-imide films with high modulus and low CTE. Eur. Polym. J., 2021, 153, 110512. doi:10.1016/j.eurpolymj.2021.110512http://dx.doi.org/10.1016/j.eurpolymj.2021.110512
Yang S. Y.; Park C. E.; Jung M. S. Effects of reactive end-capper on mechanical properties of chemical amplified photosensitive polyimide. Polymer, 2003, 44(11), 3243-3249. doi:10.1016/s0032-3861(03)00273-8http://dx.doi.org/10.1016/s0032-3861(03)00273-8
Jung M. S.; Joo W. J.; Kwon O.; Sohn B. H.; Jung H. T. A high-performance positive-working photosensitive polyimide: effects of reactive end groups on the physical properties of the films. J. Appl. Polym. Sci., 2006, 102(3), 2180-2188. doi:10.1002/app.24263http://dx.doi.org/10.1002/app.24263
Vivod S. L.; Meador M. A. B.; Pugh C.; Wilkosz M.; Calomino K.; McCorkle L. Toward improved optical transparency of polyimide aerogels. ACS Appl. Mater. Interfaces, 2020, 12(7), 8622-8633. doi:10.1021/acsami.9b17796http://dx.doi.org/10.1021/acsami.9b17796
Nguyen B. N.; Meador M. A. B.; Scheiman D.; McCorkle L. Polyimide aerogels using triisocyanate as cross-linker. ACS Appl. Mater. Interfaces, 2017, 9(32), 27313-27321. doi:10.1021/acsami.7b07821http://dx.doi.org/10.1021/acsami.7b07821
Liu C. Z.; Sun M. M.; Zhang B.; Zhang X. G.; Li J. H.; Xue G.; Zhang X. W.; Zhou H. Synthesis and characterization of bisphthalonitrile-terminated polyimide precursors with unique advantages in processing and adhesive properties. Polymer, 2021, 212, 123290. doi:10.1016/j.polymer.2020.123290http://dx.doi.org/10.1016/j.polymer.2020.123290
Wang K.; Yuan X. J.; Zhan M. S. Comparison between microwave and thermal curing of a polyimide adhesive end-caped with phenylethynyl groups. Int. J. Adhesion Adhesives, 2017, 74, 28-34. doi:10.1016/j.ijadhadh.2016.12.008http://dx.doi.org/10.1016/j.ijadhadh.2016.12.008
宇平, 司政凯, 薛敏钊, 刘燕刚, 王巍. 耐高温乙炔基封端聚酰亚胺的制备与性能. 高分子材料科学与工程, 2021, 37(2), 35-40.
Hong W. J.; Yuan L. L.; Yang S. Y. High temperature phenylethynyl-terminated imide oligomers derived from asymmetric diphenyl ether diamines for resin transfer molding. Polymer, 2023, 269, 125635. doi:10.1016/j.polymer.2022.125635http://dx.doi.org/10.1016/j.polymer.2022.125635
Song Y.; Yao H. Y.; Tan H. W.; Zhu S. Y.; Dong B.; Guan S. W. Changing the memory behaviors from volatile to nonvolatile via end-capping of hyperbranched polyimides with polycyclic arenes. Dyes Pigments, 2017, 139, 730-736. doi:10.1016/j.dyepig.2017.01.008http://dx.doi.org/10.1016/j.dyepig.2017.01.008
Srinivas S.; Caputo F. E.; Graham M.; Gardner S.; Davis R. M.; McGrath J. E.; Wilkes G. L. Semicrystalline polyimides based on controlled molecular weight phthalimide end-capped 1,3-bis(4-aminophenoxy)benzene and 3,3',4,4'- biphenyltetracarboxylic dianhydride: synthesis, crystallization, melting, and stabilitythermal. Macromolecules, 1997, 30(4), 1012-1022. doi:10.1021/ma9604597http://dx.doi.org/10.1021/ma9604597
Wang C. O.; Gao M. Y.; Jia Y.; Zhai L.; He M. H.; Mo S.; Fan L. P-6.7: End-capped transparent polyimide films with improved thermal durability for optoelectronic application. Int. Conf. Disp. Technol., 2021, 52, 861-863. doi:10.1002/sdtp.15308http://dx.doi.org/10.1002/sdtp.15308
Nam K. H.; Jin J. U.; Lee D. H.; Han H.; Goh M.; Yu J.; Ku B. C.; You N. H. Towards solution-processable, thermally robust, transparent polyimide-chain-end tethered organosilicate nanohybrids. Compos. B Eng., 2019, 163, 290-296. doi:10.1016/j.compositesb.2018.11.029http://dx.doi.org/10.1016/j.compositesb.2018.11.029
0
Views
77
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution