浏览全部资源
扫码关注微信
香港大学工程学院机械工程系 香港 999077
Published:20 June 2023,
Published Online:10 May 2023,
Received:19 January 2023,
Accepted:30 March 2023
扫 描 看 全 文
周慈勇.聚合物有机光伏的电荷产生机理[J].高分子学报,2023,54(06):927-942.
Chow Philip Chi Yung.Charge Generation Mechanism of Polymer Photovoltaics[J].ACTA POLYMERICA SINICA,2023,54(06):927-942.
周慈勇.聚合物有机光伏的电荷产生机理[J].高分子学报,2023,54(06):927-942. DOI: 10.11777/j.issn1000-3304.2023.23020.
Chow Philip Chi Yung.Charge Generation Mechanism of Polymer Photovoltaics[J].ACTA POLYMERICA SINICA,2023,54(06):927-942. DOI: 10.11777/j.issn1000-3304.2023.23020.
聚合物有机光伏近年来已经获得长足的发展,最新的研究报道以Y6为代表的Y系列非富勒烯受体体系取得了接近20%的能量转换效率,然而其电荷产生的具体机制尚存在争议. 本文回顾了近年来对基于富勒烯受体和非富勒烯受体的聚合物有机光伏体系的电荷产生机理的研究报道,介绍了2种体系工作机理的异同,指出富勒烯体系虽然可以实现超快的电荷分离,却普遍存在较大的能量损失;非富勒烯体系大幅降低了器件的能量损失,但其电荷产生过程相对较慢,并且在一些情况下需要热能的辅助来实现. 本文分析了Y系列体系实现高性能的可能原因,分析表明其具有的独特的分子堆积方式和电荷产生动力学均对其优异的性能有所贡献,并提出了进一步降低能量损失和提高器件性能的可能方法与展望.
Polymer photovoltaics have achieved considerable development in recent years
and the latest Y-series non-fullerene acceptors represented by Y6 have boosted the power conversion efficiencies to nearly 20%
while some of their working mechanisms have not yet been fully understood. This paper reviews the research reports on the charge generation mechanism of polymer photovoltaic systems based on fullerene acceptors and non-fullerene acceptors in recent years
and compares the similarities and differences of the working mechanisms of the two systems and the possible reasons for the high performance of the Y series. Generally
the polymer donor-fullerene acceptor systems can achieve ultrafast charge separation
but suffers from large energy loss
which limits the improvement of their performance; the polymer donor-non-fullerene acceptor systems show greatly reduced energy loss
but their charge generation process is relatively slow
and in some cases the assistance of thermal energy is required. Y series acceptors have unique molecular packing way and charge generation kinetics which both contribute to their remarkable performance
while the specific mechanism of charge generation is still controversial. Also
possible methods and prospects for further reducing energy loss and improving device performance are proposed. It is clear that nonradiative recombination losses must be further reduced to achieve higher device performances
possibly by improving the photoluminescence quantum efficiency and fine-tuning the kinetics of the interconversion between excited state and charge transfer state. Finally
continuous efforts on improving the long term stability of polymer photovoltaic devices are still needed to promote their commercialization in the future.
聚合物有机光伏非富勒烯受体电荷产生电荷复合能量损失
Polymer photovoltaicsNon-fullerene acceptorsCharge generationCharge recombinationEnergy loss
Zhu L.; Zhang M.; Xu J. Q.; Li C.; Yan J.; Zhou G. Q.; Zhong W. K.; Hao T. Y.; Song J. L.; Xue X. N.; Zhou Z. C.; Zeng R.; Zhu H. M.; Chen C. C.; MacKenzie R. C. I.; Zou Y. C.; Nelson J.; Zhang Y. M.; Sun Y. M.; Liu F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater., 2022, 21(6), 656-663. doi:10.1038/s41563-022-01244-yhttp://dx.doi.org/10.1038/s41563-022-01244-y
Wei Y. N.; Chen Z. H.; Lu G. Y.; Yu N.; Li C. Q.; Gao J. H.; Gu X. B.; Hao X. T.; Lu G. H.; Tang Z.; Zhang J. Q.; Wei Z. X.; Zhang X.; Huang H. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv. Mater., 2022, 34(33), e2204718. doi:10.1002/adma.202204718http://dx.doi.org/10.1002/adma.202204718
Sun R.; Wu Y.; Yang X. R.; Gao Y.; Chen Z.; Li K.; Qiao J. W.; Wang T.; Guo J.; Liu C.; Hao X. T.; Zhu H. M.; Min J. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater., 2022, 34(26), e2110147. doi:10.1002/adma.202110147http://dx.doi.org/10.1002/adma.202110147
Gao W.; Qi F.; Peng Z. X.; Lin F. R.; Jiang K.; Zhong C.; Kaminsky W.; Guan Z. Q.; Lee C. S.; Marks T. J.; Ade H.; Jen A. K. Y. Achieving 19% power conversion efficiency in planar-mixed heterojunction organic solar cells using a pseudosymmetric electron acceptor. Adv. Mater., 2022, 34(32), e2202089. doi:10.1002/adma.202202089http://dx.doi.org/10.1002/adma.202202089
Zheng X. J.; Zuo L. J.; Zhao F.; Li Y. K.; Chen T. Y.; Shan S. Q.; Yan K. R.; Pan Y. W.; Xu B. W.; Li C. Z.; Shi M. M.; Hou J. H.; Chen H. Z. High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability. Adv. Mater., 2022, 34(17), e2200044. doi:10.1002/adma.202200044http://dx.doi.org/10.1002/adma.202200044
Fan J. Y.; Liu Z. X.; Rao J.; Yan K. R.; Chen Z.; Ran Y. X.; Yan B. Y.; Yao J. Z.; Lu G. H.; Zhu H. M.; Li C. Z.; Chen H. Z. High-performance organic solar modules via bilayer-merged-annealing assisted blade coating. Adv. Mater., 2022, 34(28), e2110569. doi:10.1002/adma.202110569http://dx.doi.org/10.1002/adma.202110569
Qin F.; Sun L. L.; Chen H. T.; Liu Y.; Lu X.; Wang W.; Liu T. F.; Dong X. Y.; Jiang P.; Jiang Y. Y.; Wang L.; Zhou Y. H. 54 cm2 Large-area flexible organic solar modules with efficiency above 13. Adv. Mater., 2021, 33(39), e2103017. doi:10.1002/adma.202103017http://dx.doi.org/10.1002/adma.202103017
Sun R.; Wang T.; Yang X. R.; Wu Y.; Wang Y.; Wu Q.; Zhang M. J.; Brabec C. J.; Li Y. F.; Min J. High-speed sequential deposition of photoactive layers for organic solar cell manufacturing. Nat. Energy, 2022, 7(11), 1087-1099. doi:10.1038/s41560-022-01140-4http://dx.doi.org/10.1038/s41560-022-01140-4
Xue P. Y.; Cheng P.; Han R. P. S.; Zhan X. W. Printing fabrication of large-area non-fullerene organic solar cells. Mater. Horiz., 2022, 9(1), 194-219. doi:10.1039/d1mh01317chttp://dx.doi.org/10.1039/d1mh01317c
Yan C. Q.; Barlow S.; Wang Z. H.; Yan H.; Jen A. K. Y.; Marder S. R.; Zhan X. W. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater., 2018, 3(3), 18003. doi:10.1038/natrevmats.2018.3http://dx.doi.org/10.1038/natrevmats.2018.3
Wang J. Y.; Xue P. Y.; Jiang Y. T.; Huo Y.; Zhan X. W. The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem., 2022, 6(9), 614-634. doi:10.1038/s41570-022-00409-2http://dx.doi.org/10.1038/s41570-022-00409-2
Bredas J. L. Mind the gap. Mater. Horiz., 2014, 1(1), 17-19. doi:10.1039/c3mh00098bhttp://dx.doi.org/10.1039/c3mh00098b
Zhang J. Y.; Liu W. R.; Zhou G. Q.; Yi Y. P.; Xu S. J.; Liu F.; Zhu H. M.; Zhu X. Z. Accurate determination of the minimum HOMO offset for efficient charge generation using organic semiconducting alloys. Adv. Energy Mater., 2020, 10(5), 1903298. doi:10.1002/aenm.201903298http://dx.doi.org/10.1002/aenm.201903298
Zhang G. Y.; Zhao J. B.; Chow P. C. Y.; Jiang K.; Zhang J. Q.; Zhu Z. L.; Zhang J.; Huang F.; Yan H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev., 2018, 118(7), 3447-3507. doi:10.1021/acs.chemrev.7b00535http://dx.doi.org/10.1021/acs.chemrev.7b00535
Jamieson F. C.; Domingo E. B.; McCarthy-Ward T.; Heeney M.; Stingelin N.; Durrant J. R. Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci., 2012, 3(2), 485-492. doi:10.1039/c1sc00674fhttp://dx.doi.org/10.1039/c1sc00674f
Zusan A.; Vandewal K.; Allendorf B.; Hansen N. H.; Pflaum J.; Salleo A.; Dyakonov V.; Deibel C. The crucial influence of fullerene phases on photogeneration in organic bulk heterojunction solar cells. Adv. Energy Mater., 2014, 4(17), 1400922. doi:10.1002/aenm.201400922http://dx.doi.org/10.1002/aenm.201400922
Savoie B. M.; Rao A.; Bakulin A. A.; Gelinas S.; Movaghar B.; Friend R. H.; Marks T. J.; Ratner M. A. Unequal partnership: asymmetric roles of polymeric donor and fullerene acceptor in generating free charge. J. Am. Chem. Soc., 2014, 136(7), 2876-2884. doi:10.1021/ja411859mhttp://dx.doi.org/10.1021/ja411859m
Bernardo B.; Cheyns D.; Verreet B.; Schaller R. D.; Rand B. P.; Giebink N. C. Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells. Nat. Commun., 2014, 5, 3245. doi:10.1038/ncomms4245http://dx.doi.org/10.1038/ncomms4245
Gelinas S.; Rao A.; Kumar A.; Smith S. L.; Chin A. W.; Clark J.; van der Poll T. S.; Bazan G. C.; Friend R. H. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science, 2014, 343(6170), 512. doi:10.1126/science.1246249http://dx.doi.org/10.1126/science.1246249
Burke T. M.; Sweetnam S.; Vandewal K.; McGehee M. D. Beyond Langevin recombination: how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells. Adv. Energy Mater., 2015, 5(11), 1500123. doi:10.1002/aenm.201500123http://dx.doi.org/10.1002/aenm.201500123
Ndjawa G. O. N.; Graham K. R.; Mollinger S.; Wu D. M.; Hanifi D.; Prasanna R.; Rose B. D.; Dey S.; Yu L. Y.; Brédas J. L.; McGehee M. D.; Salleo A.; Amassian A. Open-circuit voltage in organic solar cells: the impacts of donor semicrystallinity and coexistence of multiple interfacial charge-transfer bands. Adv. Energy Mater., 2017, 7(12), 1601995. doi:10.1002/aenm.201601995http://dx.doi.org/10.1002/aenm.201601995
Lin Y. Z.; Zhao F. W.; Prasad S. K. K.; Chen J. D.; Cai W. Z.; Zhang Q. Q.; Chen K.; Wu Y.; Ma W.; Gao F.; Tang J. X.; Wang C. R.; You W.; Hodgkiss J. M.; Zhan X. W. Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with >12% efficiency. Adv. Mater., 2018, 30(16), 1706363. doi:10.1002/adma.201706363http://dx.doi.org/10.1002/adma.201706363
Liu J.; Chen S. S.; Qian D. P.; Gautam B.; Yang G. F.; Zhao J. B.; Bergqvist J.; Zhang F. L.; Ma W.; Ade H.; Inganäs O.; Gundogdu K.; Gao F.; Yan H. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy, 2016, 1(7), 1-7. doi:10.1038/nenergy.2016.89http://dx.doi.org/10.1038/nenergy.2016.89
Li S. X.; Zhan L. L.; Sun C. K.; Zhu H. M.; Zhou G. Q.; Yang W. T.; Shi M. M.; Li C. Z.; Hou J. H.; Li Y. F.; Chen H. Z. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets. J. Am. Chem. Soc., 2019, 141(7), 3073-3082. doi:10.1021/jacs.8b12126http://dx.doi.org/10.1021/jacs.8b12126
Zhu L.; Zhang M.; Zhou G. Q.; Hao T. Y.; Xu J. Q.; Wang J.; Qiu C. Q.; Prine N.; Ali J.; Feng W.; Gu X. D.; Ma Z. F.; Tang Z.; Zhu H. M.; Ying L.; Zhang Y. M.; Liu F. Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties. Adv. Energy Mater., 2020, 10(18), 2070083. doi:10.1002/aenm.202070083http://dx.doi.org/10.1002/aenm.202070083
Zhong Y. F.; Causa’ M.; Moore G. J.; Krauspe P.; Xiao B.; Günther F.; Kublitski J.; Shivhare R.; Benduhn J.; BarOr E.; Mukherjee S.; Yallum K. M.; Réhault J.; Mannsfeld S. C. B.; Neher D.; Richter L. J.; DeLongchamp D. M.; Ortmann F.; Vandewal K.; Zhou E. J.; Banerji N. Sub-picosecond charge-transfer at near-zero driving force in polymer: non-fullerene acceptor blends and bilayers. Nat. Commun., 2020, 11(1), 833. doi:10.1038/s41467-020-14549-whttp://dx.doi.org/10.1038/s41467-020-14549-w
Chen S. S.; Wang Y. M.; Zhang L.; Zhao J. B.; Chen Y. Z.; Zhu D. L.; Yao H. T.; Zhang G. Y.; Ma W.; Friend R. H.; Chow P. C. Y.; Gao F.; Yan H. Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer. Adv. Mater., 2018, 30(45), e1804215. doi:10.1002/adma.201804215http://dx.doi.org/10.1002/adma.201804215
Chandrabose S.; Chen K.; Barker A. J.; Sutton J. J.; Prasad S. K. K.; Zhu J. S.; Zhou J. D.; Gordon K. C.; Xie Z. Q.; Zhan X. W.; Hodgkiss J. M. High exciton diffusion coefficients in fused ring electron acceptor films. J. Am. Chem. Soc., 2019, 141(17), 6922-6929. doi:10.1021/jacs.8b12982http://dx.doi.org/10.1021/jacs.8b12982
Firdaus Y.; Le Corre V. M.; Karuthedath S.; Liu W. L.; Markina A.; Huang W. T.; Chattopadhyay S.; Nahid M. M.; Nugraha M. I.; Lin Y. B.; Seitkhan A.; Basu A.; Zhang W. M.; McCulloch I.; Ade H.; Labram J.; Laquai F.; Andrienko D.; Koster L. A.; Anthopoulos T. D. Long-range exciton diffusion in molecular non-fullerene acceptors. Nat. Commun., 2020, 11(1), 5220. doi:10.1038/s41467-020-19029-9http://dx.doi.org/10.1038/s41467-020-19029-9
Karuthedath S.; Gorenflot J.; Firdaus Y.; Chaturvedi N.; De Castro C. S. P.; Harrison G. T.; Khan J. I.; Markina A.; Balawi A. H.; Dela Peña T. A.; Liu W. L.; Liang R. Z.; Sharma A.; Paleti S. H. K.; Zhang W. M.; Lin Y. B.; Alarousu E.; Lopatin S.; Anjum D. H.; Beaujuge P. M.; De Wolf S.; McCulloch I.; Anthopoulos T. D.; Baran D.; Andrienko D.; Laquai F. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat. Mater., 2021, 20(3), 378-384. doi:10.1038/s41563-020-00835-xhttp://dx.doi.org/10.1038/s41563-020-00835-x
Ma C.; Chan C. C. S.; Zou X. H.; Yu H.; Zhang J. Q.; Yan H.; Wong K.; Chow P. Unraveling the temperature dependence of exciton dissociation and free charge generation in nonfullerene organic solar cells. Solar RRL, 2021, 5(4), 2000789. doi:10.1002/solr.202000789http://dx.doi.org/10.1002/solr.202000789
Lu H.; Chen K.; Bobba R. S.; Shi J. J.; Li M. Y.; Wang Y. L.; Xue J. W.; Xue P. Y.; Zheng X. J.; Thorn K. E.; Wagner I.; Lin C. Y.; Song Y.; Ma W.; Tang Z.; Meng Q. B.; Qiao Q.; Hodgkiss J. M.; Zhan X. W. Simultaneously enhancing exciton/charge transport in organic solar cells by an organoboron additive. Adv. Mater., 2022, 34(42), e2205926. doi:10.1002/adma.202205926http://dx.doi.org/10.1002/adma.202205926
Hinrichsen T. F.; Chan C. C. S.; Ma C.; Paleček D.; Gillett A.; Chen S. S.; Zou X. H.; Zhang G. C.; Yip H. L.; Wong K. S.; Friend R. H.; Yan H.; Rao A.; Chow P. C. Y. Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nat. Commun., 2020, 11(1), 5617. doi:10.1038/s41467-020-19332-5http://dx.doi.org/10.1038/s41467-020-19332-5
Koster L. J. A.; Smits E. C. P.; Mihailetchi V. D.; Blom P. W. M. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B, 2005, 72(8), 085205. doi:10.1103/physrevb.72.085205http://dx.doi.org/10.1103/physrevb.72.085205
Chan C. C. S.; Ma C.; Zou X.; Xing Z.; Zhang G.; Yip H. L.; Taylor R. A.; He Y.; Wong K. S.; Chow P. C. Y. Quantification of temperature‐dependent charge separation and recombination dynamics in non‐fullerene organic photovoltaics. Adv. Funct. Mater. 2021, 31 (48), 2107157. doi:10.1002/adfm.202107157http://dx.doi.org/10.1002/adfm.202107157
Perdigón-Toro L.; Zhang H. T.; Markina A.; Yuan J.; Hosseini S. M.; Wolff C. M.; Zuo G. Z.; Stolterfoht M.; Zou Y. P.; Gao F.; Andrienko D.; Shoaee S.; Neher D. Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell. Adv. Mater., 2020, 32(9), e1906763. doi:10.1002/adma.201906763http://dx.doi.org/10.1002/adma.201906763
Li X. E.; Zhang Q. L.; Yu J. W.; Xu Y.; Zhang R.; Wang C. F.; Zhang H. T.; Fabiano S.; Liu X. J.; Hou J. H.; Gao F.; Fahlman M. Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nat. Commun., 2022, 13(1), 2046. doi:10.1038/s41467-022-29702-whttp://dx.doi.org/10.1038/s41467-022-29702-w
Zhang G. C.; Chen X. K.; Xiao J. Y.; Chow P. C. Y.; Ren M. R.; Kupgan G.; Jiao X. C.; Chan C. C. S.; Du X. Y.; Xia R. X.; Chen Z. M.; Yuan J.; Zhang Y. Q.; Zhang S. F.; Liu Y. D.; Zou Y. P.; Yan H.; Wong K. S.; Coropceanu V.; Li N.; Brabec C. J.; Bredas J. L.; Yip H. L.; Cao Y. Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nat. Commun., 2020, 11(1), 3943. doi:10.1038/s41467-020-17867-1http://dx.doi.org/10.1038/s41467-020-17867-1
Zhu X. X.; Zhang G. C.; Zhang J.; Yip H. L.; Hu B. Self-stimulated dissociation in non-fullerene organic bulk-heterojunction solar cells. Joule, 2020, 4(11), 2443-2457. doi:10.1016/j.joule.2020.09.005http://dx.doi.org/10.1016/j.joule.2020.09.005
Yao H.; Qian D. P.; Zhang H.; Qin Y. P.; Xu B. W.; Cui Y.; Yu R. N.; Gao F.; Hou J. H. Critical role of molecular electrostatic potential on charge generation in organic solar cells. Chinese J. Chem., 2018, 36, 491-494. doi:10.1002/cjoc.201800015http://dx.doi.org/10.1002/cjoc.201800015
Yao H. F.; Cui Y.; Qian D. P.; Ponseca C. S.Jr, Honarfar A.; Xu Y.; Xin J. M.; Chen Z. Y.; Hong L.; Gao B. W.; Yu R. N.; Zu Y. F.; Ma W.; Chabera P.; Pullerits T.; Yartsev A.; Gao F.; Hou J. H. 14.7% Efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference. J. Am. Chem. Soc., 2019, 141(19), 7743-7750. doi:10.1021/jacs.8b12937http://dx.doi.org/10.1021/jacs.8b12937
Ma L. J.; Yao H. F.; Wang J. W.; Xu Y.; Gao M. Y.; Zu Y. F.; Cui Y.; Zhang S. Q.; Ye L.; Hou J. H. Impact of electrostatic interaction on bulk morphology in efficient donor-acceptor photovoltaic blends. Angew. Chem. Int. Ed., 2021, 60(29), 15988-15994. doi:10.1002/anie.202102622http://dx.doi.org/10.1002/anie.202102622
Wang R.; Zhang C. F.; Li Q.; Zhang Z. G.; Wang X. Y.; Xiao M. Charge separation from an intra-moiety intermediate state in the high-performance PM6:Y6 organic photovoltaic blend. J. Am. Chem. Soc., 2020, 142(29), 12751-12759. doi:10.1021/jacs.0c04890http://dx.doi.org/10.1021/jacs.0c04890
Price M. B.; Hume P. A.; Ilina A.; Wagner I.; Tamming R. R.; Thorn K. E.; Jiao W. T.; Goldingay A.; Conaghan P. J.; Lakhwani G.; Davis N. J. L. K.; Wang Y. F.; Xue P. Y.; Lu H.; Chen K.; Zhan X. W.; Hodgkiss J. M. Free charge photogeneration in a single component high photovoltaic efficiency organic semiconductor. Nat. Commun., 2022, 13(1), 2827. doi:10.1038/s41467-022-30127-8http://dx.doi.org/10.1038/s41467-022-30127-8
Wang Y. F.; Price M. B.; Bobba R. S.; Lu H.; Xue J. W.; Wang Y. L.; Li M. Y.; Ilina A.; Hume P. A.; Jia B. Y.; Li T. F.; Zhang Y. C.; Davis N. J. L. K.; Tang Z.; Ma W.; Qiao Q.; Hodgkiss J. M.; Zhan X. W. Quasi-homojunction organic nonfullerene photovoltaics featuring fundamentals distinct from bulk heterojunctions. Adv. Mater., 2022, 34(50), e2206717. doi:10.1002/adma.202206717http://dx.doi.org/10.1002/adma.202206717
Rau U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B, 2007, 76(8), 085303. doi:10.1103/physrevb.76.085303http://dx.doi.org/10.1103/physrevb.76.085303
Kirchartz T.; Nelson J.; Rau U. Reciprocity between charge injection and extraction and its influence on the interpretation of electroluminescence spectra in organic solar cells. Phys. Rev. Appl., 2016, 5(5), 054003. doi:10.1103/physrevapplied.5.054003http://dx.doi.org/10.1103/physrevapplied.5.054003
Shockley W.; Queisser H. J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys., 1961, 32(3), 510-519. doi:10.1063/1.1736034http://dx.doi.org/10.1063/1.1736034
Ross R. T. Some thermodynamics of photochemical systems. J. Chem. Phys., 1967, 46(12), 4590-4593. doi:10.1063/1.1840606http://dx.doi.org/10.1063/1.1840606
Miller O. D.; Yablonovitch E.; Kurtz S. R. Strong internal and external luminescence as solar cells approach the Shockley-queisser limit. IEEE J. Photovolt., 2012, 2(3), 303-311. doi:10.1109/jphotov.2012.2198434http://dx.doi.org/10.1109/jphotov.2012.2198434
Yao J. Z.; Kirchartz T.; Vezie M. S.; Faist M. A.; Gong W.; He Z. C.; Wu H. B.; Troughton J.; Watson T.; Bryant D.; Nelson J. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl., 2015, 4, 014020. doi:10.1103/physrevapplied.4.014020http://dx.doi.org/10.1103/physrevapplied.4.014020
Vandewal K.; Tvingstedt K.; Gadisa A.; Inganäs O.; Manca J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater., 2009, 8(11), 904-909. doi:10.1038/nmat2548http://dx.doi.org/10.1038/nmat2548
Chow P. C. Y.; Gélinas S.; Rao A.; Friend R. H. Quantitative bimolecular recombination in organic photovoltaics through triplet exciton formation. J. Am. Chem. Soc., 2014, 136(9), 3424-3429. doi:10.1021/ja410092nhttp://dx.doi.org/10.1021/ja410092n
Eisner F. D.; Azzouzi M.; Fei Z. P.; Hou X. Y.; Anthopoulos T. D.; Dennis T. J. S.; Heeney M.; Nelson J. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J. Am. Chem. Soc., 2019, 141(15), 6362-6374. doi:10.1021/jacs.9b01465http://dx.doi.org/10.1021/jacs.9b01465
Qian D. P.; Zheng Z. L.; Yao H. F.; Tress W.; Hopper T. R.; Chen S. L.; Li S. S.; Liu J.; Chen S. S.; Zhang J. B.; Liu X. K.; Gao B. W.; Ouyang L. Q.; Jin Y. Z.; Pozina G.; Buyanova I. A.; Chen W. M.; Inganäs O.; Coropceanu V.; Bredas J. L.; Yan H.; Hou J. H.; Zhang F. L.; Bakulin A. A.; Gao F. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater., 2018, 17(8), 703-709. doi:10.1038/s41563-018-0128-zhttp://dx.doi.org/10.1038/s41563-018-0128-z
Chen X. K.; Qian D. P.; Wang Y. M.; Kirchartz T.; Tress W.; Yao H. F.; Yuan J.; Hülsbeck M.; Zhang M. J.; Zou Y. P.; Sun Y. M.; Li Y. F.; Hou J. H.; Inganäs O.; Coropceanu V.; Bredas J. L.; Gao F. A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy, 2021, 6(8), 799-806. doi:10.1038/s41560-021-00843-4http://dx.doi.org/10.1038/s41560-021-00843-4
Chen X. K.; Coropceanu V.; Brédas J. L. Assessing the nature of the charge-transfer electronic states in organic solar cells. Nat. Commun., 2018, 9(1), 5295. doi:10.1038/s41467-018-07707-8http://dx.doi.org/10.1038/s41467-018-07707-8
Classen A.; Chochos C. L.; Lüer L.; Gregoriou V. G.; Wortmann J.; Osvet A.; Forberich K.; McCulloch I.; Heumüller T.; Brabec C. J. The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nat. Energy, 2020, 5(9), 711-719. doi:10.1038/s41560-020-00684-7http://dx.doi.org/10.1038/s41560-020-00684-7
Chen Z.; Chen X.; Jia Z. Y.; Zhou G. Q.; Xu J. Q.; Wu Y. X.; Xia X. X.; Li X. F.; Zhang X. N.; Deng C.; Zhang Y.; Lu X. H.; Liu W. M.; Zhang C. F.; Yang Y.; Zhu H. M. Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells. Joule, 2021, 5(7), 1832-1844. doi:10.1016/j.joule.2021.04.002http://dx.doi.org/10.1016/j.joule.2021.04.002
Chow P. C. Y.; Chan C. C. S.; Ma C.; Zou X. H.; Yan H.; Wong K. S. Factors that prevent spin-triplet recombination in non-fullerene organic photovoltaics. J. Phys. Chem. Lett., 2021, 12(21), 5045-5051. doi:10.1021/acs.jpclett.1c01214http://dx.doi.org/10.1021/acs.jpclett.1c01214
Gillett A. J.; Privitera A.; Dilmurat R.; Karki A.; Qian D.; Pershin A.; Londi G.; Myers W. K.; Lee J.; Yuan J.; Ko S. J.; Riede M. K.; Gao F.; Bazan G. C.; Rao A.; Nguyen T. Q.; Beljonne D.; Friend R. H., The role of charge recombination to triplet excitons in organic solar cells. Nature, 2021, 597(7878), 666-671. doi:10.1038/s41586-021-03840-5http://dx.doi.org/10.1038/s41586-021-03840-5
Aldrich T. J.; Matta M.; Zhu W. G.; Swick S. M.; Stern C. L.; Schatz G. C.; Facchetti A.; Melkonyan F. S.; Marks T. J. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure, end-group redistribution, and solar cell photovoltaic response. J. Am. Chem. Soc., 2019, 141(7), 3274-3287. doi:10.1021/jacs.8b13653http://dx.doi.org/10.1021/jacs.8b13653
Wu J. Y.; Lee J.; Chin Y. C.; Yao H. F.; Cha H.; Luke J.; Hou J. H.; Kim J. S.; Durrant J. R. Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells. Energy Environ. Sci., 2020, 13(8), 2422-2430. doi:10.1039/d0ee01338bhttp://dx.doi.org/10.1039/d0ee01338b
Wu J. Y.; Luke J.; Lee H. K. H.; Shakya Tuladhar P.; Cha H.; Jang S. Y.; Tsoi W. C.; Heeney M.; Kang H.; Lee K.; Kirchartz T.; Kim J. S.; Durrant J. R. Tail state limited photocurrent collection of thick photoactive layers in organic solar cells. Nat. Commun., 2019, 10(1), 5159. doi:10.1038/s41467-019-12951-7http://dx.doi.org/10.1038/s41467-019-12951-7
Daboczi M.; Hamilton I.; Xu S. D.; Luke J.; Limbu S.; Lee J.; McLachlan M. A.; Lee K.; Durrant J. R.; Baikie I. D.; Kim J. S. Origin of open-circuit voltage losses in perovskite solar cells investigated by surface photovoltage measurement. ACS Appl. Mater. Interfaces, 2019, 11(50), 46808-46817. doi:10.1021/acsami.9b16394http://dx.doi.org/10.1021/acsami.9b16394
Liu S.; Yuan J.; Deng W. Y.; Luo M.; Xie Y.; Liang Q. B.; Zou Y. P.; He Z. C.; Wu H. B.; Cao Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photon., 2020, 14(5), 300-305. doi:10.1038/s41566-019-0573-5http://dx.doi.org/10.1038/s41566-019-0573-5
Menke S. M.; Cheminal A.; Conaghan P.; Ran N. A.; Greehnam N. C.; Bazan G. C.; Nguyen T. Q.; Rao A.; Friend R. H. Order enables efficient electron-hole separation at an organic heterojunction with a small energy loss. Nat. Commun., 2018, 9(1), 277. doi:10.1038/s41467-017-02457-5http://dx.doi.org/10.1038/s41467-017-02457-5
Ugur E.; Ledinský M.; Allen T. G.; Holovský J.; Vlk A.; De Wolf S. Life on the urbach edge. J. Phys. Chem. Lett., 2022, 13(33), 7702-7711. doi:10.1021/acs.jpclett.2c01812http://dx.doi.org/10.1021/acs.jpclett.2c01812
Kaiser C.; Sandberg O. J.; Zarrabi N.; Li W.; Meredith P.; Armin A. A universal Urbach rule for disordered organic semiconductors. Nat. Commun., 2021, 12(1), 3988. doi:10.1038/s41467-021-24202-9http://dx.doi.org/10.1038/s41467-021-24202-9
Karki A.; Vollbrecht J.; Dixon A. L.; Schopp N.; Schrock M.; Reddy G. N. M.; Nguyen T. Q. Understanding the high performance of over 15% efficiency in single-junction bulk heterojunction organic solar cells. Adv. Mater., 2019, 31(48), e1903868. doi:10.1002/adma.201903868http://dx.doi.org/10.1002/adma.201903868
Yuan J.; Zhang Y. Q.; Zhou L. Y.; Zhang G. C.; Yip H. L.; Lau T. K.; Lu X. H.; Zhu C.; Peng H. J.; Johnson P. A.; Leclerc M.; Cao Y.; Ulanski J.; Li Y. F.; Zou Y. P. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3(4), 1140-1151. doi:10.1016/j.joule.2019.01.004http://dx.doi.org/10.1016/j.joule.2019.01.004
Ren M. R.; Zhang G. C.; Chen Z.; Xiao J. Y.; Jiao X. C.; Zou Y. P.; Yip H. L.; Cao Y. High-performance ternary organic solar cells with controllable morphology via sequential layer-by-layer deposition. ACS Appl. Mater. Interfaces, 2020, 12(11), 13077-13086. doi:10.1021/acsami.9b23011http://dx.doi.org/10.1021/acsami.9b23011
Sun R.; Wu Q.; Guo J.; Wang T.; Wu Y.; Qiu B. B.; Luo Z. H.; Yang W. Y.; Hu Z. C.; Guo J.; Shi M. M.; Yang C. L.; Huang F.; Li Y. F.; Min J. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule, 2020, 4(2), 407-419. doi:10.1016/j.joule.2019.12.004http://dx.doi.org/10.1016/j.joule.2019.12.004
Zhang G. C.; Lin F. R.; Qi F.; Heumüller T.; Distler A.; Egelhaaf H. J.; Li N.; Chow P. C. Y.; Brabec C. J.; Jen A. K. Y.; Yip H. L. Renewed prospects for organic photovoltaics. Chem. Rev., 2022, 122(18), 14180-14274. doi:10.1021/acs.chemrev.1c00955http://dx.doi.org/10.1021/acs.chemrev.1c00955
Perdigón‐Toro L.; Phuong L.; Zeiske S.; Vandewal K.; Armin A.; Shoaee S.; Neher D. Excitons dominate the emission from PM6:Y6 cellssolar, but this does not help the open-circuit voltage of the device. ACS Energy Lett., 2021, 6, 557-564. doi:10.1021/acsenergylett.0c02572http://dx.doi.org/10.1021/acsenergylett.0c02572
Benduhn J.; Tvingstedt K.; Piersimoni F.; Ullbrich S.; Fan Y. L.; Tropiano M.; McGarry K. A.; Zeika O.; Riede M. K.; Douglas C. J.; Barlow S.; Marder S. R.; Neher D.; Spoltore D.; Vandewal K. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy, 2017, 2(6), 1-6. doi:10.1038/nenergy.2017.53http://dx.doi.org/10.1038/nenergy.2017.53
Chen X. K.; Ravva M. K.; Li H.; Ryno S. M.; Brédas J. Effect of molecular packing and charge delocalization on the nonradiative recombination of charge‐transfer states in organic solar cells. Adv. Energy Mater., 2016, 6 (24), 1601325. doi:10.1002/aenm.201601325http://dx.doi.org/10.1002/aenm.201601325
Yi Y. P.; Coropceanu V.; Brédas J. L. Exciton-dissociation and charge-recombination processes in pentacene/C60 cellssolar: theoretical insight into the impact of interface geometry. J. Am. Chem. Soc., 2009, 131(43), 15777-15783. doi:10.1021/ja905975whttp://dx.doi.org/10.1021/ja905975w
Yang B.; Yi Y. P.; Zhang C. R.; Aziz S.; Coropceanu V.; Brédas J. Impact of electron delocalization on the nature of the charge-transfer states in model pentacene/C60 interfaces: a density functional theory study. J. Phys. Chem. C, 2014, 118, 27648-27656. doi:10.1021/jp5074076http://dx.doi.org/10.1021/jp5074076
Rand B. P.; Cheyns D.; Vasseur K.; Giebink N. C.; Mothy S.; Yi Y. P.; Coropceanu V.; Beljonne D.; Cornil J.; Brédas J. L.; Genoe J. The impact of molecular orientation on the photovoltaic properties of a phthalocyanine/fullerene heterojunction. Adv. Funct. Mater., 2012, 22(14), 2987-2995. doi:10.1002/adfm.201200512http://dx.doi.org/10.1002/adfm.201200512
Tumbleston J. R.; Collins B. A.; Yang L. Q.; Stuart A. C.; Gann E.; Ma W.; You W.; Ade H. The influence of molecular orientation on organic bulk heterojunction solar cells. Nat. Photon., 2014, 8(5), 385-391. doi:10.1038/nphoton.2014.55http://dx.doi.org/10.1038/nphoton.2014.55
Hörmann U.; Lorch C.; Hinderhofer A.; Gerlach A.; Gruber M.; Kraus J.; Sykora B.; Grob S.; Linderl T.; Wilke A.; Opitz A.; Hansson R.; Anselmo A. S.; Ozawa Y.; Nakayama Y.; Ishii H.; Koch N.; Moons E.; Schreiber F.; Brütting W. Voc from a morphology point of view: the influence of molecular orientation on the open circuit voltage of organic planar heterojunction solar cells. J. Phys. Chem. C, 2014, 118(46), 26462-26470. doi:10.1021/jp506180khttp://dx.doi.org/10.1021/jp506180k
Ran N. A.; Roland S.; Love J. A.; Savikhin V.; Takacs C. J.; Fu Y. T.; Li H.; Coropceanu V.; Liu X. F.; Brédas J. L.; Bazan G. C.; Toney M. F.; Neher D.; Nguyen T. Q. Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nat. Commun., 2017, 8(1), 79. doi:10.1038/s41467-017-00107-4http://dx.doi.org/10.1038/s41467-017-00107-4
Bartynski A. N.; Gruber M.; Das S.; Rangan S.; Mollinger S.; Trinh C.; Bradforth S. E.; Vandewal K.; Salleo A.; Bartynski R. A.; Bruetting W.; Thompson M. E. Symmetry-breaking charge transfer in a zinc chlorodipyrrin acceptor for high open circuit voltage organic photovoltaics. J. Am. Chem. Soc., 2015, 137(16), 5397-5405. doi:10.1021/jacs.5b00146http://dx.doi.org/10.1021/jacs.5b00146
Azzouzi M.; Kirchartz T.; Nelson J. Factors controlling open-circuit voltage losses in organic solar cells. Trends Chem., 2019, 1(1), 49-62. doi:10.1016/j.trechm.2019.01.010http://dx.doi.org/10.1016/j.trechm.2019.01.010
Cha H.; Zheng Y. Z.; Dong Y. F.; Lee H. H.; Wu J. Y.; Bristow H.; Zhang J. B.; Lee H. K. H.; Tsoi W. C.; Bakulin A. A.; McCulloch I.; Durrant J. R. Organic solar cells: exciton and charge carrier dynamics in highly crystalline PTQ10:IDIC organic solar cells. Adv. Energy Mater., 2020, 10(38), 2070158. doi:10.1002/aenm.202070158http://dx.doi.org/10.1002/aenm.202070158
Chen Z.; Chen X.; Qiu B. B.; Zhou G. Q.; Jia Z. Y.; Tao W. J.; Li Y. F.; Yang Y. M.; Zhu H. M. Ultrafast hole transfer and carrier transport controlled by nanoscale-phase morphology in nonfullerene organic solar cells. J. Phys. Chem. Lett., 2020, 11(9), 3226-3233. doi:10.1021/acs.jpclett.0c00919http://dx.doi.org/10.1021/acs.jpclett.0c00919
Zhang K. N.; Jiang Z. N.; Wang T.; Qiao J. W.; Feng L.; Qin C. C.; Yin H.; So S. K.; Hao X. T. Exploring the mechanisms of exciton diffusion improvement in ternary polymer solar cells: from ultrafast to ultraslow temporal scale. Nano Energy, 2021, 79, 105513. doi:10.1016/j.nanoen.2020.105513http://dx.doi.org/10.1016/j.nanoen.2020.105513
Ghasemi M.; Balar N.; Peng Z. X.; Hu H. W.; Qin Y. P.; Kim T.; Rech J. J.; Bidwell M.; Mask W.; McCulloch I.; You W.; Amassian A.; Risko C.; O’Connor B. T.; Ade H. A molecular interaction-diffusion framework for predicting organic solar cell stability. Nat. Mater., 2021, 20(4), 525-532. doi:10.1038/s41563-020-00872-6http://dx.doi.org/10.1038/s41563-020-00872-6
Sun R.; Wang W.; Yu H.; Chen Z.; Xia X. X.; Shen H.; Guo J.; Shi M. M.; Zheng Y. N.; Wu Y.; Yang W. Y.; Wang T.; Wu Q.; Yang Y.; Lu X. H.; Xia J. L.; Brabec C. J.; Yan H.; Li Y. F.; Min J. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5(6), 1548-1565. doi:10.1016/j.joule.2021.04.007http://dx.doi.org/10.1016/j.joule.2021.04.007
Fu H.; Peng Z.; Fan Q.; Lin F. R.; Qi F.; Ran Y.; Wu Z.; Fan B.; Jiang K.; Woo H. Y.; Lu G.; Ade H.; Jen A. K. Y. A top-down strategy to engineer active layer morphology for highly efficient and stable all-polymer solar cells. Adv. Mater. 2022, 34 (33), 2202608. doi:10.1002/adma.202202608http://dx.doi.org/10.1002/adma.202202608
Zhang L. L.; Zhang Z. Q.; Deng D.; Zhou H. Q.; Zhang J. Q.; Wei Z. X. N-π-N type oligomeric acceptor achieves an OPV efficiency of 18.19% with low energy loss and excellent stability. Adv. Sci., 2022, 9(23), e2202513. doi:10.1002/advs.202202513http://dx.doi.org/10.1002/advs.202202513
Jiang K.; Zhang J.; Peng Z. X.; Lin F.; Wu S. F.; Li Z.; Chen Y. Z.; Yan H.; Ade H.; Zhu Z. L.; Jen A. K. Y. Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nat. Commun., 2021, 12(1), 468. doi:10.1038/s41467-020-20791-zhttp://dx.doi.org/10.1038/s41467-020-20791-z
Zhan L. L.; Li S. X.; Xia X. X.; Li Y. K.; Lu X. H.; Zuo L. J.; Shi M. M.; Chen H. Z. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18. Adv. Mater., 2021, 33(12), e2007231. doi:10.1002/adma.202007231http://dx.doi.org/10.1002/adma.202007231
Jiang K.; Zhang J.; Zhong C.; Lin F. R.; Qi F.; Li Q.; Peng Z. X.; Kaminsky W.; Jang S. H.; Yu J. W.; Deng X.; Hu H. W.; Shen D.; Gao F.; Ade H.; Xiao M.; Zhang C. F.; Jen A. K. Y. Suppressed recombination loss in organic photovoltaics adopting a planar-mixed heterojunction architecture. Nat. Energy, 2022, 7(11), 1076-1086. doi:10.1038/s41560-022-01138-yhttp://dx.doi.org/10.1038/s41560-022-01138-y
0
Views
139
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution