浏览全部资源
扫码关注微信
四川大学化学工程学院制药与生物工程系 成都 610065
Li-ming Ge, E-mail: geliming@scu.edu.cn
Published:20 August 2023,
Published Online:25 May 2023,
Received:24 January 2023,
Accepted:22 March 2023
扫 描 看 全 文
谭魏葳,雷苏苏,龙涛等.具有葡萄糖响应性释药的多糖基可注射自愈合水凝胶[J].高分子学报,2023,54(08):1155-1165.
Tan Wei-wei,Lei Su-su,Long Tao,et al.Polysaccharide Based Injectable Self-healing Hydrogels with Glucose Responsive Drug Release Behavior[J].ACTA POLYMERICA SINICA,2023,54(08):1155-1165.
谭魏葳,雷苏苏,龙涛等.具有葡萄糖响应性释药的多糖基可注射自愈合水凝胶[J].高分子学报,2023,54(08):1155-1165. DOI: 10.11777/j.issn1000-3304.2023.23024.
Tan Wei-wei,Lei Su-su,Long Tao,et al.Polysaccharide Based Injectable Self-healing Hydrogels with Glucose Responsive Drug Release Behavior[J].ACTA POLYMERICA SINICA,2023,54(08):1155-1165. DOI: 10.11777/j.issn1000-3304.2023.23024.
葡萄糖响应性自愈合水凝胶能够自发修复结构损伤,并针对高血糖环境快速释放药物,是治疗糖尿病慢性创面的重要策略. 利用自然界储量丰富的天然高分子多糖海藻酸钠、壳聚糖为基材,首先通过高碘酸钠氧化法制备双醛海藻酸钠;对双醛海藻酸钠接枝3-氨基苯硼酸得到苯硼酸-双醛海藻酸钠;苯硼酸-双醛海藻酸钠能够与羧甲基壳聚糖、没食子酸通过动态亚胺键和硼酸酯键形成具有葡萄糖响应性的可注射自愈合水凝胶. 其中,没食子酸既作为交联剂又是治疗糖尿病慢性创面的活性药物. 所制备的多糖基水凝胶呈现出三维多孔结构,具有良好的可注射性、自愈合性、吸水性和机械性能. 有意义的是,水凝胶能够快速响应葡萄糖刺激以快速释放没食子酸. 此外,由于双交联作用形成的水凝胶网络的缓慢崩解,该水凝胶能够持续释放没食子酸. 因此,具有葡萄糖响应以快速-持续释放活性药物的水凝胶在药物递送和糖尿病创面治疗中具有潜在的应用价值.
Diabetes mellitus patients commonly suffer from chronic wounds
facing amputation and mortality risk. Hyperglycemia in the diabetic chronic wound environment leads to the hypoxia
immunocytes damage and chronic proinflammatory state
culminating in unhealed wounds. Glucose-responsive self-healing hydrogel
which can repair self-damage spontaneously and release drugs rapidly in the hyperglycemic environment
is an important strategy for chronic diabetic wounds treatment. Herein
a glucose-responsive self-healing hydrogel was prepared based on polysaccharides: sodium alginate was oxidized into dialdehyde sodium alginate by sodium periodate; 3-aminophenylboric acid was grafted onto the chains of dialdehyde sodium alginate; phenylboric acid modified dialdehyde sodium alginate can form self-healing hydrogel (PBA-OSA-CS hydrogel) with carboxymethyl chitosan and gallic acid through dynamic imine bonds and borate ester bonds. Notably
gallic acid is not only a cross-linking agent but also an active drug for treating diabetic chronic wounds. The PBA-OSA-CS hydrogel showed three-dimensional porous structure (30‒60 μm)
good injectability
self-healing properties and mechanical properties (about 22 kPa) and water absorption (about 550%). In-depth exploration revealed that PBA-OSA-CS hydrogel exhibited high sensitivity to glucose stimulation to rapidly release gallic acid. And the double cross-linked network avoided the burst disintegration of hydrogel
contributing to a continuous drug release. The release of gallic acid conformed to the Weibull distribution model (
R
2
adj
=0.997
MSC=5.021) and it obeyed the law of Fickian diffusion. Taken together
PBA-OSA-CS hydrogel with glucose response to rapidly and continuously release active drugs has potential applications in drug delivery and diabetes wound treatment.
水凝胶双醛海藻酸钠壳聚糖葡萄糖响应药物控释
HydrogelDialdehyde sodium alginateChitosanGlucose responsivenessDrug controlled release
Sun H.; Saeedi P.; Karuranga S.; Pinkepank M.; Ogurtsova K.; Duncan B. B.; Stein C.; Basit A.; Chan J. C. N.; Mbanya J. C.; Pavkov M. E.; Ramachandaran A.; Wild S. H.; James S.; Herman W. H.; Zhang P.; Bommer C.; Kuo S.; Boyko E. J.; Magliano D. J. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119. doi:10.1016/j.diabres.2021.109119http://dx.doi.org/10.1016/j.diabres.2021.109119
Eming S. A.; Martin P.; Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6(265), 265sr6. doi:10.1126/scitranslmed.3009337http://dx.doi.org/10.1126/scitranslmed.3009337
Talebian S.; Mehrali M.; Taebnia N.; Pennisi C. P.; Kadumudi F. B.; Foroughi J.; Hasany M.; Nikkhah M.; Akbari M.; Orive G.; Dolatshahi-Pirouz A. Self-healing hydrogels: the next paradigm shift in tissue engineering? Adv. Sci., 2019, 6(16), 1801664. doi:10.1002/advs.201801664http://dx.doi.org/10.1002/advs.201801664
Song J.; Zhang Y. N.; Chan S. Y.; Du Z. Y.; Yan Y. J.; Wang T. J.; Li P.; Huang W. Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. npj Flex. Electron., 2021, 5(1), 1-17. doi:10.1038/s41528-021-00122-yhttp://dx.doi.org/10.1038/s41528-021-00122-y
Liang Y. P.; He J. H.; Guo B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano, 2021, 15(8), 12687-12722. doi:10.1021/acsnano.1c04206http://dx.doi.org/10.1021/acsnano.1c04206
Wang S. Y.; Urban, M. W. Self-healing polymers. Nat. Rev. Mater., 2020, 5(8), 562-583. doi:10.1038/s41578-020-0202-4http://dx.doi.org/10.1038/s41578-020-0202-4
Lei J. F.; Li X. Y.; Wang S.; Yuan L.; Ge L. M.; Li D. F.; Mu C. D. Facile fabrication of biocompatible gelatin-based self-healing hydrogels. ACS Appl. Polym. Mater., 2019, 1(6), 1350-1358. doi:10.1021/acsapm.9b00143http://dx.doi.org/10.1021/acsapm.9b00143
Rial-Hermida M. I.; Rey-Rico A.; Blanco-Fernandez B.; Carballo-Pedrares N.; Byrne E. M.; Mano J. F. Recent progress on polysaccharide-based hydrogels for controlled delivery of therapeutic biomolecules. ACS Biomater. Sci. Eng., 2021, 7(9), 4102-4127. doi:10.1021/acsbiomaterials.0c01784http://dx.doi.org/10.1021/acsbiomaterials.0c01784
Pellá M. C. G.; Lima-Tenório M. K.; Tenório-Neto E. T.; Guilherme M. R.; Muniz E. C.; Rubira A. F. Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr. Polym., 2018, 196, 233-245. doi:10.1016/j.carbpol.2018.05.033http://dx.doi.org/10.1016/j.carbpol.2018.05.033
He Y. X.; Li Y.; Sun Y. D.; Zhao S. J.; Feng M.; Xu G. M.; Zhu H. F.; Ji P. H.; Mao H. L.; He Y. Y.; Gu Z. W. A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydr. Polym., 2021, 261, 117870. doi:10.1016/j.carbpol.2021.117870http://dx.doi.org/10.1016/j.carbpol.2021.117870
Sharifzadeh G.; Hosseinkhani H. Biomolecule-responsive hydrogels in medicine. Adv. Healthcare Mater., 2017, 6(24), 1700801. doi:10.1002/adhm.201700801http://dx.doi.org/10.1002/adhm.201700801
温娜. 葡萄糖响应性淀粉纳米粒子的制备及其对胰岛素的控制释放行为研究. 兰州大学博士学位论文, 2018.
刘赣, 杨浩, 马如江, 史林启. 基于苯硼酸的葡萄糖响应性聚合物材料在胰岛素投递和血糖检测中的应用. 高分子学报, 2014, (9), 1161-1173. doi:10.11777/j.issn1000-3304.2014.14079http://dx.doi.org/10.11777/j.issn1000-3304.2014.14079
Xu Z. J.; Liu G. T.; Liu P.; Hu Y. Y.; Chen Y. X.; Fang Y. F.; Sun G. M.; Huang H.; Wu J. Hyaluronic acid-based glucose-responsive antioxidant hydrogel platform for enhanced diabetic wound repair. Acta Biomater., 2022, 147, 147-157. doi:10.1016/j.actbio.2022.05.047http://dx.doi.org/10.1016/j.actbio.2022.05.047
Xu Y.; Tang G. Y.; Zhang C.; Wang N.; Feng Y. B. Gallic acid and diabetes mellitus: its association with oxidative stress. Molecules, 2021, 26(23), 7115. doi:10.3390/molecules26237115http://dx.doi.org/10.3390/molecules26237115
Huang D. W.; Chang W. C.; Wu J. S. B.; Shih R. W.; Shen S. C. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr. Res., 2016, 36(2), 150-160. doi:10.1016/j.nutres.2015.10.001http://dx.doi.org/10.1016/j.nutres.2015.10.001
Variya B. C.; Bakrania A. K.; Patel S. S. Antidiabetic potential of Gallic acid from Emblica officinalis: improved glucose transporters and insulin sensitivity through PPAR-γ and Akt signaling. Phytomedicine, 2020, 73, 152906. doi:10.1016/j.phymed.2019.152906http://dx.doi.org/10.1016/j.phymed.2019.152906
Ha A. W.; Kim W. K. Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway. Nutr. Res. Pract., 2017, 11(3), 206-213. doi:10.4162/nrp.2017.11.3.206http://dx.doi.org/10.4162/nrp.2017.11.3.206
Lyu Y. B.; Ren H.; Yu M. C.; Li X. Y.; Li D. F.; Mu C. D. Using oxidized amylose as carrier of linalool for the development of antibacterial wound dressing. Carbohydr. Polym., 2017, 174, 1095-1105. doi:10.1016/j.carbpol.2017.07.033http://dx.doi.org/10.1016/j.carbpol.2017.07.033
滕文琪. 高韧度水凝胶人工角膜支架的制备及其性能研究. 浙江大学博士学位论文, 2014.
Hu C.; Zhang F. J.; Long L. Y.; Kong Q. S.; Luo R. F.; Wang Y. B. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J. Control. Release, 2020, 324, 204-217. doi:10.1016/j.jconrel.2020.05.010http://dx.doi.org/10.1016/j.jconrel.2020.05.010
唐子龙, 颜林, 刘汉文, 欧晓明, 李丽. 水杨醛缩芳胺类Schiff碱的无溶剂法合成及其光学性质. 精细化工中间体, 2012, 42(3), 26-30.
Meng H.; Xiao P.; Gu J. C.; Wen X. F.; Xu J.; Zhao C. Z.; Zhang J. W.; Chen T. Self-healable macro-/ microscopic shape memory hydrogels based on supramolecular interactions. Chem. Commun. (Camb), 2014, 50(82), 12277-12280. doi:10.1039/c4cc04760ehttp://dx.doi.org/10.1039/c4cc04760e
Yi X. L.; Xu Z. L.; Liu Q. S.; Zhou H. M.; Yuan L.; Li D. F.; Zhao L.; Mu C. D.; Ge L. M. Matrix metalloproteinase-responsive collagen-oxidized hyaluronic acid injectable hydrogels for osteoarthritic therapy. Biomater. Adv., 2022, 137, 212804. doi:10.1016/j.bioadv.2022.212804http://dx.doi.org/10.1016/j.bioadv.2022.212804
Huang H. Q.; Wang X. J.; Yu J. C.; Chen Y.; Ji H.; Zhang Y. M.; Rehfeldt F.; Wang Y.; Zhang K. Liquid-behaviors-assisted fabrication of multidimensional birefringent materials from dynamic hybrid hydrogels. ACS Nano, 2019, 13(4), 3867-3874. doi:10.1021/acsnano.9b00551http://dx.doi.org/10.1021/acsnano.9b00551
Caliari S. R.; Burdick J. A. A practical guide to hydrogels for cell culture. Nat. Methods, 2016, 13(5), 405-414. doi:10.1038/nmeth.3839http://dx.doi.org/10.1038/nmeth.3839
Shoji E.; Freund M. S. Potentiometric saccharide detection based on the pKa changes of poly(aniline boronic acid). J. Am. Chem. Soc., 2002, 124(42), 12486-12493. doi:10.1021/ja0267371http://dx.doi.org/10.1021/ja0267371
Zhang Y.; Huo M. R.; Zhou J. P.; Zou A. F.; Li W. Z.; Yao C. L.; Xie S. F. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J., 2010, 12(3), 263-271. doi:10.1208/s12248-010-9185-1http://dx.doi.org/10.1208/s12248-010-9185-1
Papadopoulou V.; Kosmidis K.; Vlachou M.; Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm., 2006, 309(1-2), 44-50. doi:10.1016/j.ijpharm.2005.10.044http://dx.doi.org/10.1016/j.ijpharm.2005.10.044
0
Views
92
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution