浏览全部资源
扫码关注微信
1.大连理工大学,精细化工国家重点实验室,大连 116000
2.大连理工大学,化工学院高分子科学与工程学系,大连 116000
3.大连理工大学,化工学院药学系,大连 116000
Chong Liu, E-mail: 985600687@mail.dlut.edu.cn
Published:20 September 2023,
Published Online:18 April 2023,
Received:31 January 2023,
Accepted:14 March 2023
扫 描 看 全 文
刘冲,程昉,何炜.基于乙烯基砜表面构建双向密度梯度的通用策略及其在生物检测芯片制备的研究[J].高分子学报,2023,54(09):1320-1332.
Liu Chong,Cheng Fang,He Wei.Versatile Bidirectional Density Gradients Constructing Strategy Based on Vinyl Sulfone Surfaces for the Study of Bio-detection Chip Preparation[J].ACTA POLYMERICA SINICA,2023,54(09):1320-1332.
刘冲,程昉,何炜.基于乙烯基砜表面构建双向密度梯度的通用策略及其在生物检测芯片制备的研究[J].高分子学报,2023,54(09):1320-1332. DOI: 10.11777/j.issn1000-3304.2023.23027.
Liu Chong,Cheng Fang,He Wei.Versatile Bidirectional Density Gradients Constructing Strategy Based on Vinyl Sulfone Surfaces for the Study of Bio-detection Chip Preparation[J].ACTA POLYMERICA SINICA,2023,54(09):1320-1332. DOI: 10.11777/j.issn1000-3304.2023.23027.
报道了一种基于乙烯基砜(VS)表面的双向密度梯度构建的新策略,该策略能够在生物配体梯度表面上直接生长惰性聚合物刷而不需要额外的表面改性. 采用该策略制备明确的配体密度芯片可用于在复杂生物流体中对应抗体的高特异性检测. 选择荧光素作为小分子活性配体模型以发展和验证该策略. 采用该策略制备荧光素和两性离子聚合物刷组成的双向密度梯度样品,并通过荧光素抗体(anti-FITC)在样品表面的皮尔森系数优选出聚甲基丙烯酸磺基甜菜碱(PSBMA)作为惰性配体. 该双向密度梯度样品对anti-FITC和牛血清白蛋白(BSA)分别具有良好的特异性和抗非特异性结合能力. 通过该策略制备了具有明确anti-FITC吸附性能的荧光素芯片,发现高密度荧光素芯片在BSA和50%胎牛血清(FBS)溶液中对anti-FITC具有高的特异性和敏感性. 此外,选择抗人绒毛膜促性腺激素抗体(anti-HCG)和抗
β
2
-微球蛋白抗体(anti-BMG) 作为生物大分子模型验证该策略的通用性. 因此,该策略不仅可以作为双向密度梯度制备的通用方法,而且可为生物检测芯片的制备提供理论指导.
A new strategy of constructing the bidirectional density gradients based on vinyl sulfone (VS) surfaces was developed
which could promote the direct growth of the polymer brushes on the bioactive ligand density gradient surface without any modifications. The chips with well-defined densities of the ligands prepared using such strategy can be used for specific detection of corresponding antibody in complex biological fluids. Fluorescein was selected as the small biomolecule model to develop and demonstrate this strategy. Bidirectional density gradient samples composed of fluorescein and zwitterionic polymer brushes were prepared
and poly(sulfobetaine methacrylate) (PSBMA) was selected as preferable inert ligand by evaluation of the Pearson coefficient of fluorescein antibody (anti-FITC) on the sample surface. The samples showed excellent specific and anti-nonspecific binding towards anti-FITC and bovine serum albumin (BSA)
respectively. The fluorescein chips with well-defined adsorption property of anti-FITC were prepared by this strategy. And we demonstrated the chip with high fluorescein density in BSA and 50% fetal bovine serum (FBS) solution displayed high specificity and sensitivity towards anti-FITC. In addition
the universality of the strategy was evaluated using human chorionic gonadotropin antibody (anti-HCG) and beta-2-microglobulin antibody (anti-BMG) as biomacromolecule models. Overall
such strategy can not only act as universal method for preparing bidirectional gradient samples
but also provide theoretical guidance for the preparation of bio-detection chips.
双向密度梯度乙烯基砜表面荧光素聚甲基丙烯酸磺基甜菜碱
Bidirectional density gradientVinyl sulfone surfaceFluoresceinPoly(sulfobetaine methacrylate)
He Y. J.; Santana M. F.; Staneviciute A.; Pimentel M. B.; Yang F. P.; Goes J.; Kawaji K.; Vaicik M. K.; Abdulhadi R.; Hibino N.; Papavasiliou G. Cell-laden gradient hydrogel scaffolds for neovascularization of engineered tissues. Adv. Healthcare Mater., 2021, 10(7), 2001706. doi:10.1002/adhm.202001706http://dx.doi.org/10.1002/adhm.202001706
Inoue S.; Iida Y.; Otani Y.; Hirano Y.; Tabata Y. Adhesion behavior of human adipo-stromal cells on self-assembled monolayers with different surface densities or gradients of RGD peptide. J. Biomater. Sci. Polym. Ed., 2009, 20(4), 495-510. doi:10.1163/156856209x416502http://dx.doi.org/10.1163/156856209x416502
Pei J.; Hall H.; Spencer N. D. The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide. Biomaterials, 2011, 32(34), 8968-8978. doi:10.1016/j.biomaterials.2011.08.034http://dx.doi.org/10.1016/j.biomaterials.2011.08.034
Hua D. W.; Xiong R. H.; Braeckmans K.; Scheid B.; Huang C. B.; Sauvage F.; De Smedt S. C. Concentration gradients in material sciences: Methods to design and biomedical applications. Adv. Funct. Mater., 2021, 31(15), 2009005. doi:10.1002/adfm.202009005http://dx.doi.org/10.1002/adfm.202009005
Wang P. Y.; Clements L. R.; Thissen H.; Tsai W. B.; Voelcker N. H. Screening rat mesenchymal stem cell attachment and differentiation on surface chemistries using plasma polymer gradients. Acta Biomater., 2015, 11, 58-67. doi:10.1016/j.actbio.2014.09.027http://dx.doi.org/10.1016/j.actbio.2014.09.027
Zhang H. L.; Zheng X. W.; Ahmed W.; Yao Y. J.; Bai J.; Chen Y. C.; Gao C. Y. Design and applications of cell-selective surfaces and interfaces. Biomacromolecules, 2018, 19(6), 1746-1763. doi:10.1021/acs.biomac.8b00264http://dx.doi.org/10.1021/acs.biomac.8b00264
Li M. Y.; Cheng F.; Li H. Q.; Jin W. W.; Chen C.; He W.; Cheng G.; Wang Q. Site-specific and covalent immobilization of his-tagged proteins via surface vinyl sulfone-imidazole coupling. Langmuir, 2019, 35(50), 16466-16475. doi:10.1021/acs.langmuir.9b02933http://dx.doi.org/10.1021/acs.langmuir.9b02933
Li M. Y.; Dong J. C.; Cheng F.; Li C. M.; Wang H. N.; Sun T.; He W.; Wang Q. Controlling conjugated antibodies at the molecular level for active targeting nanoparticles toward HER2-positive cancer cells. Mol. Pharmaceutics, 2021, 18(3), 1196-1207. doi:10.1021/acs.molpharmaceut.0c01090http://dx.doi.org/10.1021/acs.molpharmaceut.0c01090
Guarnieri D.; de Capua A.; Ventre M.; Borzacchiello A.; Pedone C.; Marasco D.; Ruvo M.; Netti P. A. Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater., 2010, 6(7), 2532-2539. doi:10.1016/j.actbio.2009.12.050http://dx.doi.org/10.1016/j.actbio.2009.12.050
Wu S.; Du W.; Duan Y. Y.; Zhang D. T.; Liu Y. X.; Wu B. B.; Zou X. H.; Ouyang H. W.; Gao C. Y. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Acta Biomater., 2018, 75, 75-92. doi:10.1016/j.actbio.2018.05.046http://dx.doi.org/10.1016/j.actbio.2018.05.046
Chen C. Y.; Wang C. M.; Chen P. S.; Liao W. S. Surface functional DNA density control by programmable molecular defects. Chem. Commun., 2018, 54(33), 4100-4103. doi:10.1039/c7cc09908hhttp://dx.doi.org/10.1039/c7cc09908h
Pei H.; Li F.; Wan Y.; Wei M.; Liu H. J.; Su Y.; Chen N.; Huang Q.; Fan C. H. Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. J. Am. Chem. Soc., 2012, 134(29), 11876-11879. doi:10.1021/ja304118zhttp://dx.doi.org/10.1021/ja304118z
Lagunas A.; Comelles J.; Martínez E.; Samitier J. Universal chemical gradient platforms using poly(methyl methacrylate) based on the biotin-streptavidin interaction for biological applications. Langmuir, 2010, 26(17), 14154-14161. doi:10.1021/la102640whttp://dx.doi.org/10.1021/la102640w
Xue P. H.; Liu W. D.; Gu Z. Y.; Chen X. C.; Nan J. J.; Zhang J. H.; Sun H. C.; Cui Z. C.; Yang B. Graded protein/PEG nanopattern arrays: Well-defined gradient biomaterials to induce basic cellular behaviors. ACS Appl. Mater. Interfaces, 2019, 11(1), 1595-1603. doi:10.1021/acsami.8b16547http://dx.doi.org/10.1021/acsami.8b16547
Ippel B. D.; Komil M. I.; Bartels P. A. A.; Söntjens S. H. M.; Boonen R. J. E. A.; Smulders M. M. J.; Dankers P. Y. W. Supramolecular additive-initiated controlled atom transfer radical polymerization of zwitterionic polymers on ureido-pyrimidinone-based biomaterial surfaces. Macromolecules, 2020, 53(11), 4454-4464. doi:10.1021/acs.macromol.0c00160http://dx.doi.org/10.1021/acs.macromol.0c00160
Ye Q.; He B. L.; Zhang Y.; Zhang J.; Liu S. J.; Zhou F. Grafting robust thick zwitterionic polymer brushes via subsurface-initiated ring-opening metathesis polymerization for antimicrobial and anti-biofouling. ACS Appl. Mater. Interfaces, 2019, 11(42), 39171-39178. doi:10.1021/acsami.9b11946http://dx.doi.org/10.1021/acsami.9b11946
Ladd J.; Zhang Z.; Chen S. F.; Hower J. C.; Jiang S. Y. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules, 2008, 9(5), 1357-1361. doi:10.1021/bm701301shttp://dx.doi.org/10.1021/bm701301s
Afzali Z.; Matsushita T.; Kogure A.; Masuda T.; Azuma T.; Kushiro K.; Kasama T.; Miyake R.; Takai M. Cell adhesion and migration on thickness gradient bilayer polymer brush surfaces: effects of properties of polymeric materials of the underlayer. ACS Appl. Mater. Interfaces, 2022, 14(2), 2605-2617. doi:10.1021/acsami.1c21453http://dx.doi.org/10.1021/acsami.1c21453
Carvalho A. M.; Soares da Costa D.; Reis R. L.; Pashkuleva I. Influence of hyaluronan density on the behavior of breast cancer cells with different CD44 expression. Adv. Healthcare Mater., 2022, 11(4), 2101309. doi:10.1002/adhm.202101309http://dx.doi.org/10.1002/adhm.202101309
Rasi Ghaemi S.; Delalat B.; Cavallaro A.; Mierczynska-Vasilev A.; Vasilev K.; Voelcker N. H. Differentiation of rat mesenchymal stem cells toward osteogenic lineage on extracellular matrix protein gradients. Adv. Healthc. Mater., 2019, 8(17), 1900595. doi:10.1002/adhm.201900595http://dx.doi.org/10.1002/adhm.201900595
Wang C.; Hao H. Y.; Wang J.; Xue Y. F.; Huang J. J.; Ren K. F.; Ji J. High-throughput hyaluronic acid hydrogel arrays for cell selective adhesion screening. J. Mater. Chem. B, 2021, 9(19), 4024-4030. doi:10.1039/d1tb00429hhttp://dx.doi.org/10.1039/d1tb00429h
Hao H. Y.; Huang J. J.; Liu P.; Xue Y. F.; Wang J.; Jia F.; Ren K. F.; Jin Q.; Ji J. Rapid buildup arrays with orthogonal biochemistry gradients via light-induced thiol-ene "click" chemistry for high-throughput screening of peptide combinations. ACS Appl. Mater. Interfaces, 2020, 12(18), 20243-20252. doi:10.1021/acsami.0c03199http://dx.doi.org/10.1021/acsami.0c03199
Du W.; Gao C. Y. Selective adhesion and directional migration of endothelial cells guided by Cys-Ala-Gly peptide density gradient on antifouling polymer brushes. Macromol. Biosci., 2019, 19(11), 1970028. doi:10.1002/mabi.201970028http://dx.doi.org/10.1002/mabi.201970028
Liang S.; Yu S.; Zhou N.; Deng J.; Gao C. Y. Controlling the selective and directional migration of hepatocytes by a complementary density gradient of glycosylated hyperbranched polymers and poly(ethylene glycol) molecules. Acta Biomater., 2017, 56, 161-170. doi:10.1016/j.actbio.2016.12.032http://dx.doi.org/10.1016/j.actbio.2016.12.032
Hao H. Y.; Huang J. J.; Liu P.; Xue Y. F.; Wang J.; Ren K. F.; Jin Q.; Ji J.; Greiner A.; Agarwal S. Rapid build-up of high-throughput screening microarrays with biochemistry gradients via light-induced thiol-ene "click" chemistry. J. Mater. Chem. B, 2021, 9(13), 3032-3037. doi:10.1039/d1tb00167ahttp://dx.doi.org/10.1039/d1tb00167a
Zoppe J. O.; Ataman N. C.; Mocny P.; Wang J.; Moraes J.; Klok H. A. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev., 2017, 117(3), 1105-1318. doi:10.1021/acs.chemrev.6b00314http://dx.doi.org/10.1021/acs.chemrev.6b00314
Mocny P.; Klok H. A. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Prog. Polym. Sci., 2020, 100, 101185. doi:10.1016/j.progpolymsci.2019.101185http://dx.doi.org/10.1016/j.progpolymsci.2019.101185
Wang H. Q.; Cheng F.; He W.; Zhu J. H.; Cheng G.; Qu J. P. Poly(ethylene) glycol hydrogel based on oxa-Michael reaction: precursor synthesis and hydrogel formation. Biointerphases, 2017, 12(2), 02C414. doi:10.1116/1.4984305http://dx.doi.org/10.1116/1.4984305
Wang H. Q.; Cheng F.; Shen W.; Cheng G.; Zhao J.; Peng W.; Qu J. P. Amino acid-based anti-fouling functionalization of silica nanoparticles using divinyl sulfone. Acta Biomater., 2016, 40, 273-281. doi:10.1016/j.actbio.2016.03.035http://dx.doi.org/10.1016/j.actbio.2016.03.035
Liu C.; Cheng F.; Liu B.; Gao D. D.; Cheng G.; Li C. M.; Wang H. N.; He W. Versatile, oxygen-insensitive surface-initiated anionic polymerization to prepare functional polymer brushes in aqueous solutions. Langmuir, 2022, 38(3), 1001-1010. doi:10.1021/acs.langmuir.1c02416http://dx.doi.org/10.1021/acs.langmuir.1c02416
Liu B.; Liu H. X.; Cheng F.; Liu C.; Shao F.; Li C. M.; Cheng G.; Wang H. N. Development and post-functionalization of a colorless universal coating using bis(vinyl sulfonyl)methane. Prog. Org. Coat., 2022, 172, 107081. doi:10.1016/j.porgcoat.2022.107081http://dx.doi.org/10.1016/j.porgcoat.2022.107081
Lee C. J.; Wu H. Y.; Tang Q.; Cao B.; Wang H. F.; Cong H. B.; Zhe J.; Xu F. J.; Cheng G. Structure-function relationships of a tertiary amine-based polycarboxybetaine. Langmuir, 2015, 31(36), 9965-9972. doi:10.1021/acs.langmuir.5b02096http://dx.doi.org/10.1021/acs.langmuir.5b02096
Taylor M. E.; Clarkson D.; Greenbaum S. G.; Panzer M. J. Examining the impact of polyzwitterion chemistry on lithium ion transport in ionogel electrolytes. ACS Appl. Polym. Mater., 2021, 3(5), 2635-2645. doi:10.1021/acsapm.1c00229http://dx.doi.org/10.1021/acsapm.1c00229
Cheng F.; Ma X. C.; Feng Q. C.; Wang H. Q.; Yin M.; He W. Preparation and characterization of DNA array slides via surface Michael addition. Biointerphases, 2019, 14(6), 061003. doi:10.1063/1.5124411http://dx.doi.org/10.1063/1.5124411
Jeyachandran Y. L.; Zharnikov M. Comprehensive analysis of the effect of electron irradiation on oligo(ethylene glycol) terminated self-assembled monolayers applicable for specific and nonspecific patterning of proteins. J. Phys. Chem. C, 2012, 116(28), 14950-14959. doi:10.1021/jp303764hhttp://dx.doi.org/10.1021/jp303764h
Liang S.; Yu S.; Gao C. Y. Preparation of complementary glycosylated hyperbranched polymer/poly(ethylene glycol) brushes and their selective interactions with hepatocytes. Colloids Surf. B Biointerfaces, 2016, 145, 309-318. doi:10.1016/j.colsurfb.2016.05.005http://dx.doi.org/10.1016/j.colsurfb.2016.05.005
Hadjichristidis, N.; Hirao, A. Anionic Polymerization: Principles, Practice, Strength, Consequences and Applications. Tokyo: Springer, 2015, 132-136. doi:10.1007/978-4-431-54186-8http://dx.doi.org/10.1007/978-4-431-54186-8
Puttharugsa C.; Wangkam T.; Houngkamhang N.; Yodmongkol S.; Gajanandana O.; Himananto O.; Sutapun B.; Amarit R.; Somboonkaew A.; Srikhirin T. A polymer surface for antibody detection by using surface plasmon resonance via immobilized antigen. Curr. Appl. Phys., 2013, 13(6), 1008-1013. doi:10.1016/j.cap.2013.02.003http://dx.doi.org/10.1016/j.cap.2013.02.003
Lu J.; Paulsen I. T.; Jin D. Y. Application of exonuclease III-aided target recycling in flow cytometry: DNA detection sensitivity enhanced by orders of magnitude. Anal. Chem., 2013, 85(17), 8240-8245. doi:10.1021/ac401320dhttp://dx.doi.org/10.1021/ac401320d
Han X.; Yin B. L.; Lin S. L.; Wang Q.; Su N.; Zhang C. L. Increased maternal hCG concentrations in early in vitro pregnancy with elevated basal FSH. PLoS One, 2018, 13(9), e0203610. doi:10.1371/journal.pone.0203610http://dx.doi.org/10.1371/journal.pone.0203610
Wang H. B.; Liu B. R.; Wei J. Beta2-microglobulinB2M) in cancer immunotherapies: biological function, resistance and remedy. Cancer Lett., 2021, 517, 96-104. doi:10.1016/j.canlet.2021.06.008http://dx.doi.org/10.1016/j.canlet.2021.06.008
0
Views
27
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution