浏览全部资源
扫码关注微信
苏州大学材料与化学化工学部 新型功能高分子材料国家地方联合工程实验室 江苏省先进功能高分子材料设计及应用重点实验室 苏州市大分子设计与精密合成重点实验室 苏州 215123
Published:20 September 2023,
Published Online:01 June 2023,
Received:21 February 2023,
Accepted:28 March 2023
扫 描 看 全 文
严雨涵,吴丹明,丁承强等.机械力诱导聚合反应的研究进展[J].高分子学报,2023,54(09):1290-1302.
Yan Yu-han,Wu Dan-ming,Ding Cheng-qiang,et al.The Progress of Force Induced Polymerization[J].ACTA POLYMERICA SINICA,2023,54(09):1290-1302.
严雨涵,吴丹明,丁承强等.机械力诱导聚合反应的研究进展[J].高分子学报,2023,54(09):1290-1302. DOI: 10.11777/j.issn1000-3304.2023.23035.
Yan Yu-han,Wu Dan-ming,Ding Cheng-qiang,et al.The Progress of Force Induced Polymerization[J].ACTA POLYMERICA SINICA,2023,54(09):1290-1302. DOI: 10.11777/j.issn1000-3304.2023.23035.
机械化学作为一种温和、绿色的化学反应方法,近年来受到越来越多的关注. 使用研磨、超声等形式的机械力调控聚合反应是一种重要的高分子合成方法,在聚合过程调控和刺激响应性材料的制备方面已经显示出独特的优势. 本文总结了由超声、球磨等形式的机械力诱导的聚合反应,包括自由基聚合、氧化聚合、开环易位聚合,以及缩合聚合和点击聚合等. 同时,探讨了机械应力作用、超声空化作用以及压电效应对聚合过程的影响. 最后对机械力诱导聚合反应的研究进行了总结,对领域存在的问题和挑战进行了展望.
As a mild and green chemical reaction method
mechanochemistry has received more and more attention in recent years. The use of grinding
ultrasound and other forms of mechanical force to control the polymerization reaction is an important polymer synthesis method
which has shown unique advantages in the control of polymerization process and the preparation of stimuli-responsive materials. This paper summarizes the polymerization induced by mechanical forces such as ultrasound and ball milling
including free radical polymerization
oxidative polymerization
ring-opening metathesis polymerization
condensation polymerization and click polymerization. At the same time
the effects of mechanical stress
ultrasonic cavitation and piezoelectric effect on the polymerization process were discussed. Finally
we summarized the research of force induced polymerization and discussed the challenges and future directions in this field.
机械化学机械催化高分子力化学
MechanochemistryMechaoredox catalysisPolymer mechanochemistry
Krusenbaum A.; Grätz S.; Tigineh G. T.; Borchardt L.; Kim J. G. The mechanochemical synthesis of polymers. Chem. Soc. Rev., 2022, 51(7), 2873-2905. doi:10.1039/d1cs01093jhttp://dx.doi.org/10.1039/d1cs01093j
Didenko Y. T.; McNamara W. B.; Suslick K. S. Hot spot conditions during cavitation in water. J. Am. Chem. Soc., 1999, 121(24), 5817-5818. doi:10.1021/ja9844635http://dx.doi.org/10.1021/ja9844635
Gonnet L.; Lennox C. B.; Do J. L.; Malvestiti I.; Koenig S. G.; Nagapudi K.; Friščić T. Metal-catalyzed organic reactions by resonant acoustic mixing. Angew. Chem. Int. Ed., 2022, 134(13), e202115030. doi:10.1002/anie.202115030http://dx.doi.org/10.1002/anie.202115030
Alexander P.; Fox M. The role of free radicals in the degradation of high polymers by ultrasonics and by high-speed stirring. J. Polym. Sci., 1954, 12(1), 533-541. doi:10.1002/pol.1954.120120145http://dx.doi.org/10.1002/pol.1954.120120145
Wang Z. H.; Wang Z. H.; Pan X. C.; Fu L. Y.; Lathwal S.; Olszewski M.; Yan J. J.; Enciso A. E.; Wang Z. Y.; Xia H. S.; Matyjaszewski K. Ultrasonication-induced aqueous atom transfer radical polymerization. ACS Macro Lett., 2018, 7(3), 275-280. doi:10.1021/acsmacrolett.8b00027http://dx.doi.org/10.1021/acsmacrolett.8b00027
Collins J.; McKenzie T. G.; Nothling M. D.; Ashokkumar M.; Qiao G. G. High frequency sonoATRP of 2-hydroxyethyl acrylate in an aqueous medium. Polym. Chem., 2018, 9(19), 2562-2568. doi:10.1039/c8py00456khttp://dx.doi.org/10.1039/c8py00456k
Doerr A. M.; Burroughs J. M.; Gitter S. R.; Yang X. J.; Boydston A. J.; Long B. K. Advances in polymerizations modulated by external stimuli. ACS Catal., 2020, 10(24), 14457-14515. doi:10.1021/acscatal.0c03802http://dx.doi.org/10.1021/acscatal.0c03802
Hong K. S.; Xu H. F.; Konishi H.; Li X. C. Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett., 2010, 1(6), 997-1002. doi:10.1021/jz100027thttp://dx.doi.org/10.1021/jz100027t
Lin H.; Wu Z.; Jia Y. M.; Li W. J.; Zheng R. K.; Luo H. S. Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48fibers)O3. Appl. Phys. Lett., 2014, 104(16), 162907. doi:10.1063/1.4873522http://dx.doi.org/10.1063/1.4873522
Mohapatra H.; Kleiman M.; Esser-Kahn A. P. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem., 2017, 9(2), 135-139. doi:10.1038/nchem.2633http://dx.doi.org/10.1038/nchem.2633
Effaty F.; Gonnet L.; Koenig S. G.; Nagapudi K.; Ottenwaelder X.; Friščić T. Resonant acoustic mixing (RAM) for efficient mechanoredox catalysis without grinding or impact media. Chem. Commun. (Camb), 2023, 59(8), 1010-1013. doi:10.1039/d2cc06013bhttp://dx.doi.org/10.1039/d2cc06013b
Wang Z.; Wang J.; Ayarza J.; Steeves T.; Hu Z. Y.; Manna S.; Esser-Kahn A. P. Bio-inspired mechanically adaptive materials through vibration-induced crosslinking. Nat. Mater., 2021, 20(6), 869-874. doi:10.1038/s41563-021-00932-5http://dx.doi.org/10.1038/s41563-021-00932-5
Ravnsbæk J. B.; Swager T. M. Mechanochemical synthesis of poly(phenylene vinylenes). ACS Macro Lett., 2014, 3(4), 305-309. doi:10.1021/mz500098rhttp://dx.doi.org/10.1021/mz500098r
Grätz S.; Borchardt L. Mechanochemical polymerization—controlling a polycondensation reaction between a diamine and a dialdehyde in a ball mill. RSC Adv., 2016, 6(69), 64799-64802. doi:10.1039/c6ra15677khttp://dx.doi.org/10.1039/c6ra15677k
Cook T. L.; Walker J. A.; Mack J. Scratching the catalytic surface of mechanochemistry: a multi-component CuAAC reaction using a copper reaction vial. Green Chem., 2013, 15(3), 617-619. doi:10.1039/c3gc36720ghttp://dx.doi.org/10.1039/c3gc36720g
Oh C.; Choi E. H.; Choi E. J.; Premkumar T.; Song C. Facile solid-state mechanochemical synthesis of eco-friendly thermoplastic polyurethanes and copolymers using a biomass-derived furan diol. ACS Sustainable Chem. Eng., 2020, 8(11), 4400-4406. doi:10.1021/acssuschemeng.9b06944http://dx.doi.org/10.1021/acssuschemeng.9b06944
Rensch T.; Fabig S.; Grätz S.; Borchardt L. Mechanochemically-assisted synthesis of polyimides. ChemSusChem, 2022, 15(1), e202101975. doi:10.1002/cssc.202101975http://dx.doi.org/10.1002/cssc.202101975
Rabea A. M.; Zhu S. P. Ultrasonically enhanced bulk ATRP of methyl methacrylate at high conversion with good livingness and control. AIChE J., 2016, 62(5), 1683-1687. doi:10.1002/aic.15165http://dx.doi.org/10.1002/aic.15165
Wang Z. H.; Lorandi F.; Fantin M.; Wang Z. Y.; Yan J. J.; Wang Z. H.; Xia H. S.; Matyjaszewski K. Atom transfer radical polymerization enabled by sonochemically labile Cu-carbonate species. ACS Macro Lett., 2019, 8(2), 161-165. doi:10.1021/acsmacrolett.9b00029http://dx.doi.org/10.1021/acsmacrolett.9b00029
Xu S.; Zhang W. J.; Wang C. L.; Peng W. H.; Shi G.; Cui Z.; Fu P.; Liu M. Y.; He Y. J.; Qiao X. G.; Pang X. C. Mechanically induced atom transfer radical polymerization with high efficiency via piezoelectric heterostructures. Polymer, 2022, 252, 124949. doi:10.1016/j.polymer.2022.124949http://dx.doi.org/10.1016/j.polymer.2022.124949
McKenzie T. G.; Colombo E.; Fu Q.; Ashokkumar M.; Qiao G. G. Sono-RAFT polymerization in aqueous medium. Angew. Chem. Int. Ed., 2017, 56(40), 12302-12306. doi:10.1002/anie.201706771http://dx.doi.org/10.1002/anie.201706771
Collins J.; McKenzie T. G.; Nothling M. D.; Allison-Logan S.; Ashokkumar M.; Qiao G. G. Sonochemically initiated RAFT polymerization in organic solvents. Macromolecules, 2019, 52(1), 185-195. doi:10.1021/acs.macromol.8b01845http://dx.doi.org/10.1021/acs.macromol.8b01845
Michael P.; Binder W. H. A mechanochemically triggered "click" catalyst. Angew. Chem. Int. Ed., 2015, 54(47), 13918-13922. doi:10.1002/anie.201505678http://dx.doi.org/10.1002/anie.201505678
Wang Z.; Ayarza J.; Esser-Kahn A. P. Mechanically initiated bulk-scale free-radical polymerization. Angew. Chem. Int. Ed., 2019, 58(35), 12023-12026. doi:10.1002/anie.201903956http://dx.doi.org/10.1002/anie.201903956
Zeitler S. M.; Chakma P.; Golder M. R. Diaryliodonium salts facilitate metal-free mechanoredox free radical polymerizations. Chem. Sci., 2022, 13(14), 4131-4138. doi:10.1039/d2sc00313ahttp://dx.doi.org/10.1039/d2sc00313a
Zhou Y. N.; Li J. J.; Ljubic D.; Luo Z. H.; Zhu S. P. Mechanically mediated atom transfer radical polymerization: Exploring its potential at high conversions. Macromolecules, 2018, 51(17), 6911-6921. doi:10.1021/acs.macromol.8b01153http://dx.doi.org/10.1021/acs.macromol.8b01153
Wang Z. H.; Pan X. C.; Li L. C.; Fantin M.; Yan J. J.; Wang Z. Y.; Wang Z. H.; Xia H. S.; Matyjaszewski K. Enhancing mechanically induced ATRP by promoting interfacial electron transfer from piezoelectric nanoparticles to Cu catalysts. Macromolecules, 2017, 50(20), 7940-7948. doi:10.1021/acs.macromol.7b01597http://dx.doi.org/10.1021/acs.macromol.7b01597
Liu K. X.; Zhang W. J.; Zong L. X.; He Y. J.; Zhang X. M.; Liu M. Y.; Shi G.; Qiao X. G.; Pang X. C. Dimensional optimization for ZnO-based mechano-ATRP with extraordinary activity. J. Phys. Chem. Lett., 2022, 13(22), 4884-4890. doi:10.1021/acs.jpclett.2c01106http://dx.doi.org/10.1021/acs.jpclett.2c01106
Ding C. Q.; Yan Y. H.; Peng Y. H.; Wu D. M.; Shen H.; Zhang J. D.; Wang Z.; Zhang Z. B. Piezoelectrically mediated reversible addition-fragmentation chain-transfer polymerization. Macromolecules, 2022, 55(10), 4056-4063. doi:10.1021/acs.macromol.2c00701http://dx.doi.org/10.1021/acs.macromol.2c00701
Kruus P.; Patraboy T. J. Initiation of polymerization with ultrasound in methyl methacrylate. J. Phys. Chem., 1985, 89(15), 3379-3384. doi:10.1021/j100261a044http://dx.doi.org/10.1021/j100261a044
Price G. J.; Norris D. J.; West P. J. Polymerization of methyl methacrylate initiated by ultrasound. Macromolecules, 1992, 25(24), 6447-6454. doi:10.1021/ma00050a010http://dx.doi.org/10.1021/ma00050a010
Gu C. B.; Wang D. J.; Wang X. Q.; Huang Y.; Zhen Z.; Liu X. H. Bulk polymerization of methyl methacrylate initiated by high intensity ultrasonic irradiation and ESR study. J. Appl. Polym. Sci., 2002, 86(7), 1731-1735. doi:10.1002/app.11083http://dx.doi.org/10.1002/app.11083
Henglein V. A. Die bildung von graftpolymeren aus polyacrylamid und acrylnitril unter Dem einfluß von ultraschallwellen. Die Makromolekulare Chemie, 1954, 14(1), 128-145. doi:10.1002/macp.1954.020140110http://dx.doi.org/10.1002/macp.1954.020140110
Baytekin H. T.; Baytekin B.; Grzybowski B. A. Mechanoradicals created in "polymeric sponges" drive reactions in aqueous media. Angew. Chem. Int. Ed., 2012, 124(15), 3656-3660. doi:10.1002/ange.201108110http://dx.doi.org/10.1002/ange.201108110
Matsuda T.; Kawakami R.; Namba R.; Nakajima T.; Gong J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science, 2019, 363(6426), 504-508. doi:10.1126/science.aau9533http://dx.doi.org/10.1126/science.aau9533
Matsuda T.; Kawakami R.; Nakajima T.; Gong J. P. Crack tip field of a double-network gel: visualization of covalent bond scission through mechanoradical polymerization. Macromolecules, 2020, 53(20), 8787-8795. doi:10.1021/acs.macromol.0c01485http://dx.doi.org/10.1021/acs.macromol.0c01485
Wang, zhi, jian, Jiang J. L.; Mu Q. F.; Maeda S.; Nakajima T.; Gong J. P. Azo-crosslinked double-network hydrogels enabling highly efficient mechanoradical generation. J. Am. Chem. Soc., 2022, 144(7), 3154-3161. doi:10.1021/jacs.1c12539http://dx.doi.org/10.1021/jacs.1c12539
Lindstrom O.; Lamm O. The chemical effects produced by ultrasonic waves. J. Phys. Chem., 1951, 55(7), 1139-1146. doi:10.1021/j150490a004http://dx.doi.org/10.1021/j150490a004
Henglein A.; Schulz R. Notizen: die auslösung der polymerisation des acrylamids durch ultraschall. J. Chem. Sci, 1952, 7(8), 484-485. doi:10.1515/znb-1952-0810http://dx.doi.org/10.1515/znb-1952-0810
Fujiwara H.; Goto K. Mechanochemical polymerization in mixtures of diallyl terephthalate and distilled water by ultrasonic irradiation. Polym. Bull., 1991, 25(5), 571-574. doi:10.1007/bf00293516http://dx.doi.org/10.1007/bf00293516
Novoselova L. Y.; Sirotkina E. E. Fibrous polypropylene-polystyrene materials produced using ultrasound. Int. Polym. Sci. Technol., 2007, 34(9), 33-39. doi:10.1177/0307174x0703400905http://dx.doi.org/10.1177/0307174x0703400905
Teo B. M.; Prescott S. W.; Price G. J.; Grieser F.; Ashokkumar M. Synthesis of temperature responsive poly(N-isopropylacrylamide) using ultrasound irradiation. J. Phys. Chem. B, 2010, 114(9), 3178-3184. doi:10.1021/jp9114817http://dx.doi.org/10.1021/jp9114817
Wang H. Q.; Sun D. H.; Lu Q. C.; Wang F. L.; Zhao L. L.; Zhang Z. F.; Wang X.; Liu H. Bio-inspired synthesis of mesoporous HfO2 nanoframes as reactors for piezotronic polymerization and Suzuki coupling reactions. Nanoscale, 2019, 11(12), 5240-5246. doi:10.1039/c9nr00707ehttp://dx.doi.org/10.1039/c9nr00707e
Piermattei A.; Karthikeyan S.; Sijbesma R. P. Activating catalysts with mechanical force. Nat. Chem., 2009, 1(2), 133-137. doi:10.1038/nchem.167http://dx.doi.org/10.1038/nchem.167
Huang J. X.; Moore J. A.; Acquaye J. H.; Kaner R. B. Mechanochemical route to the conducting polymer polyaniline. Macromolecules, 2005, 38(2), 317-321. doi:10.1021/ma049711yhttp://dx.doi.org/10.1021/ma049711y
Zhao L. L.; Zhang Y.; Wang F. L.; Hu S. C.; Wang X. N.; Ma B. J.; Liu H.; Wang Z. L.; Sang Y. H. BaTiO3 nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-driven piezotronic enhancement for polymerization. Nano Energy, 2017, 39, 461-469. doi:10.1016/j.nanoen.2017.07.037http://dx.doi.org/10.1016/j.nanoen.2017.07.037
Beyer, M. K.; Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev., 2005, 105(8), 2921-2948. doi:10.1021/cr030697hhttp://dx.doi.org/10.1021/cr030697h
Trnka, T. M.; Grubbs, R. H. The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. Acc. Chem. Res., 2001, 34(1), 18-29. doi:10.1021/ar000114fhttp://dx.doi.org/10.1021/ar000114f
Jakobs R. T. M.; Sijbesma R. P. Mechanical activation of a latent olefin metathesis catalyst and persistence of its active species in ROMP. Organometallics, 2012, 31(6), 2476-2481. doi:10.1021/om300161zhttp://dx.doi.org/10.1021/om300161z
Jakobs R. T. M.; Ma S.; Sijbesma R. P. Mechanocatalytic polymerization and cross-linking in a polymeric matrix. ACS Macro Lett., 2013, 2(7), 613-616. doi:10.1021/mz400201chttp://dx.doi.org/10.1021/mz400201c
Wei K.; Gao Z. C.; Liu H. R.; Wu X. J.; Wang F.; Xu H. X. Mechanical activation of platinum-acetylide complex for olefin hydrosilylation. ACS Macro Lett., 2017, 6(10), 1146-1150. doi:10.1021/acsmacrolett.7b00487http://dx.doi.org/10.1021/acsmacrolett.7b00487
Vogt C. G.; Grätz S.; Lukin S.; Halasz I.; Etter M.; Evans J. D.; Borchardt L. Direct mechanocatalysis: palladium as milling media and catalyst in the mechanochemical suzuki polymerization. Angew. Chem. Int. Ed., 2019, 58(52), 18942-18947. doi:10.1002/anie.201911356http://dx.doi.org/10.1002/anie.201911356
Sun X.; Shi W.; Zhou X. Y.; Ding S. Facile mechanochemical preparation of polyamide-derivatives via solid-state benzoxazine-isocyanide chemistry. Chinese J. Polym. Sci., 2021, 39(5), 573-584. doi:10.1007/s10118-021-2510-6http://dx.doi.org/10.1007/s10118-021-2510-6
Liu Z.; Yan D. Y.; Shen J. C. A kind of a living radical polymerization of styrene, initiated by a polymeric iniferter under ultrasonic irradiation. Die Makromolekulare Chemie, Rapid Commun., 1988, 9(1), 27-30. doi:10.1002/marc.1988.030090106http://dx.doi.org/10.1002/marc.1988.030090106
Kruus P. Polymerization resulting from ultrasonic cavitation. Ultrasonics, 1983, 21(5), 201-204. doi:10.1016/0041-624x(83)90041-0http://dx.doi.org/10.1016/0041-624x(83)90041-0
Kruus P. Initiation of polymerization with ultrasound. Ultrasonics, 1987, 25(1), 20-22. doi:10.1016/0041-624x(87)90005-9http://dx.doi.org/10.1016/0041-624x(87)90005-9
Kruus P.; McDonald D.; Patraboy T. J. Polymerization of styrene initiated by ultrasonic cavitation. J. Phys. Chem., 1987, 91(11), 3041-3047. doi:10.1021/j100295a080http://dx.doi.org/10.1021/j100295a080
Price G. J.; Smith P. F.; West P. J. Ultrasonically initiated polymerization of methyl methacrylate. Ultrasonics, 1991, 29(2), 166-170. doi:10.1016/0041-624x(91)90047-chttp://dx.doi.org/10.1016/0041-624x(91)90047-c
Xia H. S.; Wang Q.; Liao Y. Q.; Xu X.; Baxter S. M.; Slone R. V.; Wu S. G.; Swift G.; Westmoreland D. G. Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate. Ultrason. Sonochem., 2002, 9(3), 151-158. doi:10.1016/s1350-4177(01)00118-3http://dx.doi.org/10.1016/s1350-4177(01)00118-3
Cass P.; Knower W.; Pereeia E.; Holmes N. P.; Hughes T. Preparation of hydrogels via ultrasonic polymerization. Ultrason. Sonochem., 2010, 17(2), 326-332. doi:10.1016/j.ultsonch.2009.08.008http://dx.doi.org/10.1016/j.ultsonch.2009.08.008
Bian C.; Zhou Y. N.; Luo Z. H. Mechanistic and kinetic investigation of Cu(II)-catalyzed controlled radical polymerization enabled by ultrasound irradiation. AIChE J., 2020, 66(1), e16746. doi:10.1002/aic.16746http://dx.doi.org/10.1002/aic.16746
Zaborniak I.; Chmielarz P. Temporally controlled ultrasonication-mediated atom transfer radical polymerization in miniemulsion. Macromol. Chem. Phys., 2019, 220(17), 1900285. doi:10.1002/macp.201900285http://dx.doi.org/10.1002/macp.201900285
Gan T. S.; Handschuh-Wang S.; Shang W. H.; Shen J. Y.; Zhu L. F.; Xiao Q.; Hu S. Y.; Zhou X. C. Liquid metal-mediated mechanochemical polymerization. Macromol. Rapid Commun., 2019, 40(24), 1900537. doi:10.1002/marc.201900537http://dx.doi.org/10.1002/marc.201900537
Bose A. K.; Pednekar S.; Ganguly S. N.; Chakraborty G.; Manhas M. S. A simplified green chemistry approach to the Biginelli reaction using 'Grindstone Chemistry'. Tetrahedron Lett., 2004, 45(45), 8351-8353. doi:10.1016/j.tetlet.2004.09.064http://dx.doi.org/10.1016/j.tetlet.2004.09.064
Mack J.; Shumba M. Rate enhancement of the morita-baylis-hillman reaction through mechanochemistry. Green Chem., 2007, 9(4), 328-330. doi:10.1039/b612983hhttp://dx.doi.org/10.1039/b612983h
Mack J.; Fulmer D.; Stofel S.; Santos N. The first solvent-free method for the reduction of esters. Green Chem., 2007, 9(10), 1041-1043. doi:10.1039/b706167fhttp://dx.doi.org/10.1039/b706167f
Fulmer D. A.; Shearouse W. C.; Medonza S. T.; Mack J. Solvent-free sonogashira coupling reaction via high speed ball milling. Green Chem., 2009, 11(11), 1821-1825. doi:10.1039/b915669khttp://dx.doi.org/10.1039/b915669k
Szuppa T.; Stolle A.; Ondruschka B.; Hopfe W. An alternative solvent-free synthesis of nopinone under ball-milling conditions: Investigation of reaction parameters. ChemSusChem, 2010, 3(10), 1181-1191. doi:10.1002/cssc.201000122http://dx.doi.org/10.1002/cssc.201000122
Longhi K.; Moreira D. N.; Marzari M. R. B.; Floss V. M.; Bonacorso H. G.; Zanatta N.; Martins M. A. P. An efficient solvent-free synthesis of NH-pyrazoles from β-dimethylaminovinylketones and hydrazine on grinding. Tetrahedron Lett., 2010, 51(24), 3193-3196. doi:10.1016/j.tetlet.2010.04.038http://dx.doi.org/10.1016/j.tetlet.2010.04.038
Cho H. Y.; Bielawski C. W. Atom transfer radical polymerization in the solid-state. Angew. Chem. Int. Ed., 2020, 59(33), 13929-13935. doi:10.1002/anie.202005021http://dx.doi.org/10.1002/anie.202005021
Wang Z. H.; Pan X. C.; Yan J. J.; Dadashi-Silab S.; Xie G. J.; Zhang J. N.; Wang Z. H.; Xia H. S.; Matyjaszewski K. Temporal control in mechanically controlled atom transfer radical polymerization using low ppm of Cu catalyst. ACS Macro Lett., 2017, 6(5), 546-549. doi:10.1021/acsmacrolett.7b00152http://dx.doi.org/10.1021/acsmacrolett.7b00152
Piogé S.; Tran T. N.; McKenzie T. G.; Pascual S.; Ashokkumar M.; Fontaine L.; Qiao G. Sono-RAFT polymerization-induced self-assembly in aqueous dispersion: synthesis of LCST-type thermosensitive nanogels. Macromolecules, 2018, 51(21), 8862-8869. doi:10.1021/acs.macromol.8b01606http://dx.doi.org/10.1021/acs.macromol.8b01606
Kolb H. C.; Finn M. G.; Sharpless K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5
Cravotto G.; Fokin V. V.; Garella D.; Binello A.; Boffa L.; Barge A. Ultrasound-promoted copper-catalyzed azide-alkyne cycloaddition. J. Comb. Chem., 2010, 12(1), 13-15. doi:10.1021/cc900150dhttp://dx.doi.org/10.1021/cc900150d
Cintas P.; Barge A.; Tagliapietra S.; Boffa L.; Cravotto G. Alkyne-azide click reaction catalyzed by metallic copper under ultrasound. Nat. Protoc., 2010, 5(3), 607-616. doi:10.1038/nprot.2010.1http://dx.doi.org/10.1038/nprot.2010.1
Mohapatra H.; Ayarza J.; Sanders E. C.; Scheuermann A. M.; Griffin P. J.; Esser-Kahn A. P. Ultrasound promoted step-growth polymerization and polymer crosslinking via copper catalyzed azide-alkyne click reaction. Angew. Chem. Int. Ed., 2018, 57(35), 11208-11212. doi:10.1002/anie.201804451http://dx.doi.org/10.1002/anie.201804451
0
Views
117
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution