浏览全部资源
扫码关注微信
东南大学化学化工学院 南京 211189
Hong Yang, E-mail: yangh@seu.edu.cn
Published:20 October 2023,
Published Online:26 May 2023,
Received:25 February 2023,
Accepted:04 April 2023
扫 描 看 全 文
王猛,武会会,杨洪.耐辐照透明聚酰亚胺的制备与性能研究[J].高分子学报,2023,54(10):1579-1587.
Wang Meng,Wu Hui-hui,Yang Hong.Preparation and Properties of Irradiation-resistant Transparent Polyimide[J].ACTA POLYMERICA SINICA,2023,54(10):1579-1587.
王猛,武会会,杨洪.耐辐照透明聚酰亚胺的制备与性能研究[J].高分子学报,2023,54(10):1579-1587. DOI: 10.11777/j.issn1000-3304.2023.23037.
Wang Meng,Wu Hui-hui,Yang Hong.Preparation and Properties of Irradiation-resistant Transparent Polyimide[J].ACTA POLYMERICA SINICA,2023,54(10):1579-1587. DOI: 10.11777/j.issn1000-3304.2023.23037.
近年来,聚酰亚胺材料得益于自身优异的力学性能、良好的热稳定性能、轻质柔性、易成型加工等技术优势,在空间用太阳电池柔性盖片等领域表现出广阔的应用前景,但是其光学透明度和耐辐照性能仍有待提高. 将2
2'-二(三氟甲基)二氨基联苯、1
4-双(4-氨基-2-三氟甲基苯氧基)苯和4
4'-(六氟异丙烯)二酞酸酐共聚,并掺杂离子液体1-乙基-3-甲基咪唑啉双(三氟甲基磺酰基)亚胺,制备得到了一种新型透明聚酰亚胺薄膜;进而利用电子束蒸镀技术,在聚酰亚胺薄膜表面依次蒸镀氟化镁和二氧化硅两层增透膜,获得了新型二氧化硅/氟化镁/透明聚酰亚胺(SiO
2
/MgF
2
/CPI)复合薄膜. 通过对材料的热学、力学和光学性能的研究表明,这种新型SiO
2
/MgF
2
/CPI复合薄膜的初始热分解温度为394.8 ℃,拉伸强度达到65.81 MPa,在550 nm处透光率高达93.43%. 经过能量为50 keV、注量分别为4×10
14
、2×10
15
、4×10
15
e/cm
2
的电子辐照后,SiO
2
/MgF
2
/CPI复合薄膜的热稳定性、透光率和力学性能均没有显著下降,表现出优异的耐辐照性能,在空间飞行器太阳电池柔性盖片等领域有良好的应用前景.
In recent years
polyimide has shown great application prospects in the fields of cover sheet for space solar cell due to its outstanding mechanical property
excellent thermal stability
light weight
easy processing and other properties. However
the transparency and irradiation-resistant properties of optically transparent polyimides need to be further improved. Herein
a new transparent polyimide film is prepared by the copolymerization of 2
2'-bis(trifluoromethyl)diaminobenzene
1
4-bis(4-amino-2-trifluoromethylphenoxy)benzene and 4
4'-(hexafluoroisopropylidene)diphthalic anhydride and doping with fluorine-containing ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Magnesium fluoride and silicon dioxide antireflective films are successively coated on the surface of the polyimide film by electron beam evaporation technology
and a novel silicon dioxide/magnesium fluoride/transparent polyimide (SiO
2
/MgF
2
/CPI) composite film that can be used as cover sheet for solar cell is obtained. The investigation of the thermal
optical
mechanical and irradiation-resistant properties shows that the initial thermal decomposition temperature of this SiO
2
/MgF
2
/CPI composite film is 394.8 ℃
the tensile strength reaches 65.81 MPa
and the light transmittance at 550 nm is as high as 93.43%. After electron irradiation with electron energy of 50 keV and irradiation fluences of 4×10
14
2×10
15
and 4×10
15
e/cm
2
the thermal stability
light transmittance and mechanical properties of the SiO
2
/MgF
2
/CPI composite film have no significant decrease
showing excellent irradiation-resistant property and good application prospect in solar cell cover sheets of space vehicles.
透明聚酰亚胺太阳电池盖片增透膜高透光率耐辐照
Transparent polyimideSolar cell coverAntireflective filmHigh transmittanceIrradiation-resistant
Garcia J. A. M.; Bontempo L.; Gomez-Malagon L. A.; Kassab L. R. P. Efficiency boost in Si-based solar cells using tellurite glass cover layer doped with Eu3+ and silver nanoparticles. Opt. Mater., 2019, 88, 155-160. doi:10.1016/j.optmat.2018.11.028http://dx.doi.org/10.1016/j.optmat.2018.11.028
Cardinaletti I.; Vangerven T.; Nagels S.; Cornelissen R.; Schreurs D.; Hruby J.; Vodnik J.; Devisscher D.; Kesters J.; D'Haen J.; Franquet A.; Spampinato V.; Conard T.; Maes W.; Deferme W.; Manca J. V. Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells, 2018, 182, 121-127. doi:10.1016/j.solmat.2018.03.024http://dx.doi.org/10.1016/j.solmat.2018.03.024
Yamaguchi M. Radiation-resistant solar cells for space use. Sol. Energy Mater. Sol. Cells, 2001, 68(1), 31-53. doi:10.1016/s0927-0248(00)00344-5http://dx.doi.org/10.1016/s0927-0248(00)00344-5
Latukhina N.; Rogozin A.; Puzyrnaya G.; Lizunkova D.; Gurtov A.; Ivkov S. Efficient silicon solar cells for space and ground-based aircraft. Procedia Eng., 2015, 104, 157-161. doi:10.1016/j.proeng.2015.04.107http://dx.doi.org/10.1016/j.proeng.2015.04.107
Miyazawa Y.; Ikegami M.; Chen H. W.; Ohshima T.; Imaizumi M.; Hirose K.; Miyasaka T. Tolerance of perovskite solar cell to high-energy particle irradiations in space environment. iScience, 2018, 3, 86. doi:10.1016/j.isci.2018.04.023http://dx.doi.org/10.1016/j.isci.2018.04.023
Iles P. A. Evolution of space solar cells. Sol. Energy Mater. Sol. Cells, 2001, 68(1), 1-13. doi:10.1016/s0927-0248(00)00341-xhttp://dx.doi.org/10.1016/s0927-0248(00)00341-x
Singh J. P.; Guo S. Y.; Peters I. M.; Aberle A. G.; Walsh T. M. Comparison of glass/glass and glass/backsheet PV modules using bifacial silicon solar cells. IEEE J. Photovolt., 2015, 5(3), 783-791. doi:10.1109/jphotov.2015.2405756http://dx.doi.org/10.1109/jphotov.2015.2405756
Wang H. F.; Xing G. Z.; Wang X. Y.; Zhang L. L.; Zhang L.; Li S. Chemically strengthened protection glasses for the applications of space solar cells. AIP Adv., 2014, 4(4), 047133. doi:10.1063/1.4873538http://dx.doi.org/10.1063/1.4873538
Simões R.; Neto V. F. Nanodiamond coated glass as a protective layer in solar cells. Mater. Today Proc., 2015, 2(1), 230-235. doi:10.1016/j.matpr.2015.04.027http://dx.doi.org/10.1016/j.matpr.2015.04.027
Kwak P.; Kim N.; Kim J.; Kim D.; Song K.; Lee J. Flexible space solar cell array with radiation shield fabricated by guided-printing of cover glasses. Sol. Energy Mater. Sol. Cells, 2017, 169, 210-214. doi:10.1016/j.solmat.2017.05.019http://dx.doi.org/10.1016/j.solmat.2017.05.019
高剑锋, 郝晓丽, 吕伟. 一种新型玻璃盖片的制备及性能研究. 电源技术, 2017, 41(8), 1136-1138. doi:10.3969/j.issn.1002-087X.2017.08.010http://dx.doi.org/10.3969/j.issn.1002-087X.2017.08.010
郝晓丽, 陈志宁, 于辉. 一种空间用柔性太阳电池盖片封装方法. 中国专利, CN109817758A. 2019-05-28.
崔新宇, 郝晓丽, 靳杉, 于辉. 一种空间用太阳电池柔性封装结构. 中国专利, CN109686803A. 2019-04-26.
Chang J. H. Equibiaxially stretchable colorless and transparent polyimides for flexible display substrates. Rev. Adv. Mater. Sci., 2020, 59(1), 1-9. doi:10.1515/rams-2020-0003http://dx.doi.org/10.1515/rams-2020-0003
冯鑫, 王玉辉, 赵宇霄, 于晓亮, 张培斌, 崔晶, 郭敏杰. 高综合性能无色透明聚酰亚胺薄膜的制备. 高分子学报, 2023, DOI:10.11777/j.issn1000-3304.2022.22408http://dx.doi.org/10.11777/j.issn1000-3304.2022.22408.
Shin H. I.; Chang J. H. Transparent polyimide/organoclay nanocomposite films containing different diamine monomers. Polymers, 2020, 12(1), 135. doi:10.3390/polym12010135http://dx.doi.org/10.3390/polym12010135
Lee J. W.; Jung S.; Lee T. W.; Jo J.; Chae H. Y.; Choi K.; Kim J. J.; Lee J. H.; Yang C.; Baik J. M. High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems. Adv. Energy Mater., 2019, 9(36), 1901987. doi:10.1002/aenm.201901987http://dx.doi.org/10.1002/aenm.201901987
刘金刚, 李卓, 杨海霞, 杨士勇. 高折射率高透明性半脂环聚酰亚胺的合成与性能. 高分子学报, 2008, (5), 460-465. doi:10.3321/j.issn:1000-3304.2008.05.011http://dx.doi.org/10.3321/j.issn:1000-3304.2008.05.011
Zuo H. T.; Qian G. T.; Li H. B.; Gan F.; Fang Y. T.; Li X. T.; Dong J.; Zhao X.; Zhang Q. H. Reduced coefficient of linear thermal expansion for colorless and transparent polyimide by introducing rigid-rod amide units: synthesis and properties . Polym. Chem., 2022, 13(20), 2999-3008. doi:10.1039/d2py00062hhttp://dx.doi.org/10.1039/d2py00062h
Huang F.; Feng G. Y.; Yin J. J.; Zhou S. K.; Shen L.; Wang S. T.; Luo Y. Direct laser writing of transparent polyimide film for supercapacitor. Nanomaterials (Basel), 2020, 10(12), 2547. doi:10.3390/nano10122547http://dx.doi.org/10.3390/nano10122547
黄孝华, 黄卫, 颜德岳. 含氟及硫醚基团聚酰亚胺光波导材料的合成及表征. 高分子学报, 2012, (5), 552-560.
Wu X. M.; Shu C.; He X. Q.; Wang S. B.; Fan X.; Yu Z. H.; Yan D. Y.; Huang W. Optically transparent and thermal-stable polyimide films derived from a semi-aliphatic diamine: synthesis and properties. Macromol. Chem. Phys., 2020, 221(5), 1900506. doi:10.1002/macp.201900506http://dx.doi.org/10.1002/macp.201900506
Wen P. S.; He R.; Li X. D.; Lee M. H. Syntheses and characterizations of high refractive index and low birefringence polyimides containing spirobifluorene in the side chain. Polymer, 2017, 117, 76-83. doi:10.1016/j.polymer.2017.04.020http://dx.doi.org/10.1016/j.polymer.2017.04.020
Kim J. W.; Chang J. H. Syntheses of colorless and transparent polyimide membranes for microfiltration. Polymers, 2020, 12(7), 1610. doi:10.3390/polym12071610http://dx.doi.org/10.3390/polym12071610
Zhang Y. J.; Qu L. Q.; Liu J. G.; Wu X.; Zhang Y.; Zhang R. L.; Qi H. R.; Zhang X. M. Synthesis and characterization of high-temperature-resistant and optically transparent polyimide coatings for potential applications in quartz optical fibers protection. J. Coat. Technol. Res., 2019, 16(2), 511-520. doi:10.1007/s11998-018-0129-5http://dx.doi.org/10.1007/s11998-018-0129-5
Lee G. B.; Song S. H.; Lee M. W.; Kim Y. J.; Choi B. H. Characterization of physical and mechanical properties of Al2O3-doped ZnO (AZO) thin films deposited on transparent polyimide supports with various ALD process parameters. Appl. Surf. Sci., 2021, 535, 147731. doi:10.1016/j.apsusc.2020.147731http://dx.doi.org/10.1016/j.apsusc.2020.147731
Jeon H.; Kwac L. K.; Kim H. G.; Chang J. H. Comparison of properties of colorless and transparent polyimide films using various diamine monomers. Rev. Adv. Mater. Sci., 2022, 61(1), 394-404. doi:10.1515/rams-2022-0044http://dx.doi.org/10.1515/rams-2022-0044
Wu Z. F.; Yan G. M.; Lu J. H.; Zhang G.; Yang J. Thermal plastic and optical transparent polyimide derived from isophorone diamine and sulfhydryl compounds. Ind. Eng. Chem. Res., 2019, 58(17), 6992-7000. doi:10.1021/acs.iecr.9b00674http://dx.doi.org/10.1021/acs.iecr.9b00674
Fujiwara E.; Fukudome H.; Takizawa K.; Ishige R.; Ando S. Pressure-induced variations of aggregation structures in colorless and transparent polyimide films analyzed by optical microscopy, UV-Vis absorption, and fluorescence spectroscopy. J. Phys. Chem. B, 2018, 122(38), 8985-8997. doi:10.1021/acs.jpcb.8b06423http://dx.doi.org/10.1021/acs.jpcb.8b06423
Kim S.; Hwang T. G.; Namgoong J. W.; Kim H. M.; Kim J. P. Effect of linker moiety on linear dimeric benzotriazole derivatives as highly stable UV absorber for transparent polyimide film. Dyes Pigments, 2020, 180, 108469. doi:10.1016/j.dyepig.2020.108469http://dx.doi.org/10.1016/j.dyepig.2020.108469
Lin C. Y.; Tang K. C.; Leu C. M.; Yeh Y. H. Flexible IGZO thin-film transistors and inverter circuits with diode-connected transistors fabricated on transparent polyimide substrates. Microsyst. Technol., 2022, 28(1), 275-278. doi:10.1007/s00542-019-04707-6http://dx.doi.org/10.1007/s00542-019-04707-6
He X. Q.; Wang S. B.; Wu X. M.; Shu C.; Fan X.; Yu Z. H.; Huang W. Soluble and transparent polyimides with high Tgs from a new semi-aliphatic diamine with cyclohexyl and ortho-methyl groups. High Perform. Polym., 2021, 33(5), 528-537. doi:10.1177/0954008320967052http://dx.doi.org/10.1177/0954008320967052
Li N. B.; Wang M.; Guo L. X.; Lin B. P.; Yang H. Ionic liquid embedded polyimides with ultra-foldability, ultra-flexibility, ultra-processability and superior optical transparency. Polymer, 2018, 153, 538-547. doi:10.1016/j.polymer.2018.08.048http://dx.doi.org/10.1016/j.polymer.2018.08.048
大林辰藏著, 冯克嘉译. 日地空间物理. 北京: 北京师范大学出版社, 1984. 1-11.
Townsend L. W.; Wilson J. W.; Shinn J. L.; Curtis S. B. Human exposure to large solar particle events in space. Adv. Space Res., 1992, 12(2-3), 339-348. doi:10.1016/0273-1177(92)90126-ihttp://dx.doi.org/10.1016/0273-1177(92)90126-i
祁章年. 载人航天的辐射防护与监测. 北京: 国防工业出版社, 2003. 1-20.
Womack G.; Isbilir K.; Lisco F.; Durand G.; Taylor A.; Walls J. M. The performance and durability of single-layer sol-gel anti-reflection coatings applied to solar module cover glass. Surf. Coat. Technol., 2019, 358, 76-83. doi:10.1016/j.surfcoat.2018.11.030http://dx.doi.org/10.1016/j.surfcoat.2018.11.030
Kim J. K. Influence of ionic liquid structures on polyimide-based gel polymer electrolytes for high-safety lithium batteries. J. Ind. Eng. Chem., 2018, 68, 168-172. doi:10.1016/j.jiec.2018.07.042http://dx.doi.org/10.1016/j.jiec.2018.07.042
Korkmaz Ş.; Elmas S.; Ekem N.; Pat S.; Balbağ M. Z. Deposition of MgF2 thin films for antireflection coating by using thermionic vacuum arc (TVA). Opt. Commun., 2012, 285(9), 2373-2376. doi:10.1016/j.optcom.2011.12.095http://dx.doi.org/10.1016/j.optcom.2011.12.095
Ding R. M.; Cui X. M.; Zhang C.; Zhang C.; Xu Y. Tri-wavelength broadband antireflective coating built from refractive index controlled MgF2 films. J. Mater. Chem. C, 2015, 3(13), 3219-3224. doi:10.1039/c4tc02542chttp://dx.doi.org/10.1039/c4tc02542c
0
Views
62
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution