浏览全部资源
扫码关注微信
1.上海应用技术大学化学与环境工程学院 上海 201418
2.复旦大学聚合物分子工程国家重点实验室 上海 200433
Mei-na Liu, E-mail: meina.liu@sit.edu.cn
Published:20 August 2023,
Published Online:08 June 2023,
Received:10 March 2023,
Accepted:23 April 2023
扫 描 看 全 文
周志,王梦彤,叶飞等.联用“点击”化学及可逆加成-断裂链转移聚合构建树枝化含糖聚合物及其对刀豆蛋白A识别研究[J].高分子学报,2023,54(08):1205-1218.
Zhou Zhi,Wang Meng-tong,Ye Fei,et al.Synthesis of Dendronized Glycopolymers via Combining RAFT-polymerization and Click Reaction and Their Recognition of Lectin Con A[J].ACTA POLYMERICA SINICA,2023,54(08):1205-1218.
周志,王梦彤,叶飞等.联用“点击”化学及可逆加成-断裂链转移聚合构建树枝化含糖聚合物及其对刀豆蛋白A识别研究[J].高分子学报,2023,54(08):1205-1218. DOI: 10.11777/j.issn1000-3304.2023.23041.
Zhou Zhi,Wang Meng-tong,Ye Fei,et al.Synthesis of Dendronized Glycopolymers via Combining RAFT-polymerization and Click Reaction and Their Recognition of Lectin Con A[J].ACTA POLYMERICA SINICA,2023,54(08):1205-1218. DOI: 10.11777/j.issn1000-3304.2023.23041.
通过梯度有机合成反应、联用“点击”化学反应 (铜催化叠氮-炔环加成反应(CuAAC反应)和巯基-烯光化学反应(Thiol-ene反应)),采用“聚合后改性”策略对可逆加成-断裂链转移聚合(RAFT聚合) 制备的聚五氟苯基丙烯酸酯(pPFPA)进行聚合后改性,合成得到一系列侧链结构明确的树枝化甘露糖含糖聚合物,实现侧链链接基团的刚性、柔性可调节. 系统研究侧链含有不同链接基团(刚性三唑环由CuAAC反应实现、柔性硫醚键由Thiol-ene反应实现)的树枝化含糖聚合物对刀豆蛋白A (Con A)的识别能力影响. 等温滴定量热法(ITC)测试表明,与刚性三唑环相比,树枝化含糖聚合物侧链中含有柔性链接基团比例越高,含糖聚合物与Con A的结合能力越强. 这可能是因为:一方面柔性链接基团可以在聚合物链上提供更多的空间来结合Con A;另一方面柔性链接基团在含糖聚合物对凝集素Con A识别中具有协同效应导致.
Herein
after gradient organic synthesis reaction by combining with the "click" reaction (CuAAC and thiol-ene reaction)
the pPFPA prepared by reversible addition-fragmentation chain transfer polymerization (RAFT) polymerization was conducted by post-polymerization modification to produce a series of dendritic mannose glycopolymers with the adjustable rigidity and flexibility of the linking groups in the side chains. The effect of dendronized glycopolymers containing different side chain's linking groups (rigid triazole rings is prodcued by CuAAC reaction
and flexible thioether bond is produced by Thiol-ene reaction) on the recognition ability of lectin Con A was systematically studied. The isothermal titration calorimetry (ITC) test showed that compared with the rigid triazole ring
the higher the proportion of flexible link groups in the side chain of the branched glycopolymer
the stronger the binding ability of the glycopolymer with Con A. The reason could be that the flexible linking groups can provide more space on the polymer chain to combine Con A; On the other hand
the flexible linking group has a synergistic effect in the recognition of glycopolymers with Con A.
树枝化含糖聚合物铜催化叠氮-炔环加成反应巯基-烯光化学反应凝集素刀豆蛋白A识别
Dendronized glycopolymersCopper catalyzed azide alkyne cycloaddition reactionThiol-ene photochemical reactionLectin Con A recognition
Qin, Q, Lang, S Y, Huang, X F. Synthetic linear glycopolymers and their biological applications. J. Carbohydr. Chem., 2021, 40(1-3), 1-44. doi:10.1080/07328303.2021.1928156http://dx.doi.org/10.1080/07328303.2021.1928156
Pelras T.; Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Prog. Polym. Sci., 2021, 117, 101393. doi:10.1016/j.progpolymsci.2021.101393http://dx.doi.org/10.1016/j.progpolymsci.2021.101393
Miura Y. Synthesis and biological application of glycopolymers. J. Polym. Sci. A Polym. Chem., 2007, 45(22), 5031-5036. doi:10.1002/pola.22369http://dx.doi.org/10.1002/pola.22369
Spain, S G, Cameron, N R. A spoonful of sugar: the application of glycopolymers in therapeutics. Polym. Chem., 2011, 2(1), 60-68. doi:10.1039/C0PY00149Jhttp://dx.doi.org/10.1039/C0PY00149J
Abdouni Y.; Yilmaz G.; Monaco A.; Aksakal R.; Becer C. R. Effect of arm number and length of star-shaped glycopolymers on binding to dendritic and Langerhans cell lectins. Biomacromolecules, 2020, 21(9), 3756-3764. doi:10.1021/acs.biomac.0c00856http://dx.doi.org/10.1021/acs.biomac.0c00856
Miura Y.; Hoshino Y.; Seto H. Glycopolymer nanobiotechnology. Chem. Rev., 2016, 116(4), 1673-1692. doi:10.1021/acs.chemrev.5b00247http://dx.doi.org/10.1021/acs.chemrev.5b00247
Xuan M. J.; Lu C. L.; Liu M. N.; Lin B. L. Air-tolerant direct thiol esterification with carboxylic acids using hydrosilane via simple inorganic base catalysis. J. Org. Chem., 2019, 84(12), 7694-7701. doi:10.1021/acs.joc.9b00500http://dx.doi.org/10.1021/acs.joc.9b00500
Nagao M.; Kichize M.; Hoshino Y.; Miura Y. Influence of monomer structures for polymeric multivalent ligands: consideration of the molecular mobility of glycopolymers. Biomacromolecules, 2021, 22(7), 3119-3127. doi:10.1021/acs.biomac.1c00553http://dx.doi.org/10.1021/acs.biomac.1c00553
Kimoto Y.; Terada Y.; Hoshino Y.; Miura Y. Screening of a glycopolymer library of GM1 mimics containing hydrophobic units using surface plasmon resonance imaging. ACS Omega, 2019, 4(24), 20690-20696. doi:10.1021/acsomega.9b02877http://dx.doi.org/10.1021/acsomega.9b02877
Ghadban A.; Albertin L. Synthesis of glycopolymer architectures by reversible-deactivation radical polymerization. Polymers, 2013, 5(2), 431-526. doi:10.3390/polym5020431http://dx.doi.org/10.3390/polym5020431
Gauthier M.; Gibson M.; Klok H. A. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Ed., 2009, 48(1), 48-58. doi:10.1002/anie.200801951http://dx.doi.org/10.1002/anie.200801951
Ladmiral V.; Mantovani G.; Clarkson G. J.; Cauet S.; Irwin J. L.; Haddleton D. M. Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J. Am. Chem. Soc., 2006, 128(14), 4823-4830. doi:10.1021/ja058364khttp://dx.doi.org/10.1021/ja058364k
Bhaumik A.; Peterson G. I.; Kang C.; Choi T. L. Controlled living cascade polymerization to make fully degradable sugar-based polymers from D-glucose and D-galactose. J. Am. Chem. Soc., 2019, 141(31), 12207-12211. doi:10.1021/jacs.9b05822http://dx.doi.org/10.1021/jacs.9b05822
Jono K.; Nagao M.; Oh T.; Sonoda S.; Hoshino Y.; Miura Y. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks. Chem. Commun., 2018, 54(1), 82-85. doi:10.1039/c7cc07107hhttp://dx.doi.org/10.1039/c7cc07107h
Komura T.; Takasu A. Electrophoretic deposition (EPD) of lectin in the presence of new glycopolymers aiming at facile detection of carbohydrate-protein interactions. Macromol. Chem. Phys., 2017, 218(23), 1700351. doi:10.1002/macp.201700351http://dx.doi.org/10.1002/macp.201700351
朱玉, 叶文玲, 刘志峰, 邓维, 刘美娜. 开环易位聚合反应和CuAAC反应联用制备含糖聚合物及其性质研究. 高分子学报, 2019, 50(1), 44-54. doi:10.11777/j.issn1000-3304.2018.18167http://dx.doi.org/10.11777/j.issn1000-3304.2018.18167
Chiefari J.; Bill Chong Y. K.; Ercole F.; Krstina J.; Jeffery J.; Le T. P. T.; Mayadunne R. T. A.; Meijs G. F.; Moad C. L.; Moad G.; Rizzardo E.; Thang S. H. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998, 31(16), 5559-5562. doi:10.1021/ma9804951http://dx.doi.org/10.1021/ma9804951
Wilkins L. E.; Badi N.; Du, PrezF.; Gibson M. I. Double-modified glycopolymers from thiolactones to modulate lectin selectivity and affinity. ACS Macro Lett., 2018, 7(12), 1498-1502. doi:10.1021/acsmacrolett.8b00825http://dx.doi.org/10.1021/acsmacrolett.8b00825
Wang X. B.; Liu L.; Luo Y.; Shi H. T.; Li J. Y.; Zhao H. Y. Comb-shaped glycopolymer/peptide bioconjugates by combination of RAFT polymerization and thiol-ene “click” chemistry. Macromol. Biosci., 2012, 12(11), 1575-1582. doi:10.1002/mabi.201200274http://dx.doi.org/10.1002/mabi.201200274
Charville H.; Jin J. Y.; Evans C. W.; Brimble M. A.; Williams D. E. The synthesis and lectin-binding properties of novel mannose-functionalised polymers. RSC Adv., 2013, 3(35), 15435-15441. doi:10.1039/c3ra42781ahttp://dx.doi.org/10.1039/c3ra42781a
Pranantyo D.; Xu L. Q.; Hou Z.; Kang E. T.; Chan-Park M. B. Increasing bacterial affinity and cytocompatibility with four-arm star glycopolymers and antimicrobial α-polylysine. Polym. Chem., 2017, 8(21), 3364-3373. doi:10.1039/c7py00441ahttp://dx.doi.org/10.1039/c7py00441a
Oh T.; Nagao M.; Hoshino Y.; Miura Y. Self-assembly of a double hydrophilic block glycopolymer and the investigation of its mechanism. Langmuir, 2018, 34(29), 8591-8598. doi:10.1021/acs.langmuir.8b01527http://dx.doi.org/10.1021/acs.langmuir.8b01527
Li J. J.; Tian X. Y.; Zong L. P.; Zhang Q.; Zhang X. J.; Marks R.; Cosnier S.; Shan D. Uniform and easy-to-prepare glycopolymer-brush interface for rapid protein (anti-) adhesion sensing. ACS Appl. Mater. Interfaces, 2019, 11(35), 32366-32372. doi:10.1021/acsami.9b08566http://dx.doi.org/10.1021/acsami.9b08566
Young T. D.; Liau W. T.; Lee C. K.; Mellody M.; Wong G. C. L.; Kasko A. M.; Weiss P. S. Selective promotion of adhesion of Shewanella oneidensis on mannose-decorated glycopolymer surfaces. ACS Appl. Mater. Interfaces, 2020, 12(32), 35767-35781. doi:10.1021/acsami.0c04329http://dx.doi.org/10.1021/acsami.0c04329
Liu M. N.; Wang X. Y.; Miao D. Y.; Wang C. Y.; Deng W. Synthesis of well-defined heteroglycopolymers via combining sequential click reactions and PPM: the effects of linker and heterogeneity on Con A binding 1. Polym. Chem., 2020, 11(17), 3054-3065. doi:10.1039/d0py00302fhttp://dx.doi.org/10.1039/d0py00302f
Raju Kutcherlapati S. N.; Koyilapu R.; Boddu U. M. R.; Datta D.; Perali R. S.; Swamy M. J.; Jana T. Glycopolymer-grafted nanoparticles: synthesis using RAFT polymerization and binding study with lectin. Macromolecules, 2017, 50(18), 7309-7320. doi:10.1021/acs.macromol.7b01265http://dx.doi.org/10.1021/acs.macromol.7b01265
Godoy Lopez R.; D'Agosto F.; Boisson C. Synthesis of well-defined polymer architectures by successive catalytic olefin polymerization and living/controlled polymerization reactions. Prog. Polym. Sci., 2007, 32(4), 419-454. doi:10.1016/j.progpolymsci.2007.01.004http://dx.doi.org/10.1016/j.progpolymsci.2007.01.004
Graisuwan W.; Zhao H.; Kiatkamjornwong S.; Theato P.; Hoven V. P. Formation of thermo-sensitive and cross-linkable micelles by self-assembly of poly(pentafluorophenyl acrylate)-containing block copolymer. J. Polym. Sci. A Polym. Chem., 2015, 53(9), 1103-1113. doi:10.1002/pola.27541http://dx.doi.org/10.1002/pola.27541
Gou Y. Z.; Geng J.; Richards S. J.; Burns J.; Remzi Becer C.; Haddleton D. M. A detailed study on understanding glycopolymer library and Con A interactions. J. Polym. Sci. A Polym. Chem., 2013, 51(12), 2588-2597. doi:10.1002/pola.26646http://dx.doi.org/10.1002/pola.26646
Wang X. Y.; Wang M. T.; Wang C. Y.; Deng W.; Liu M. N. Carbohydrate-lectin recognition of well-defined heterogeneous dendronized glycopolymers: systematic studies on the heterogeneity in glycopolymer-lectin binding. Polym. Chem., 2021, 12(32), 4722-4735. doi:10.1039/d1py01001hhttp://dx.doi.org/10.1039/d1py01001h
0
Views
44
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution