浏览全部资源
扫码关注微信
1.北京化工大学材料科学与工程学院 北京 100029
2.中国石油化工股份有限公司北京化工研究院 北京 100013
Jin-liang Qiao, E-mail: qiaojl.bjhy@sinopec.com
Published:20 August 2023,
Published Online:04 June 2023,
Received:07 April 2023,
Accepted:24 May 2023
扫 描 看 全 文
姚远,张晓红,茹越等.超吸湿聚合物气凝胶的制备与性能[J].高分子学报,2023,54(08):1131-1138.
Yao Yuan,Zhang Xiao-hong,Ru Yue,et al.Preparation and Properties of Super Moisture‐absorbent Polymer Aerogel[J].ACTA POLYMERICA SINICA,2023,54(08):1131-1138.
姚远,张晓红,茹越等.超吸湿聚合物气凝胶的制备与性能[J].高分子学报,2023,54(08):1131-1138. DOI: 10.11777/j.issn1000-3304.2023.23044.
Yao Yuan,Zhang Xiao-hong,Ru Yue,et al.Preparation and Properties of Super Moisture‐absorbent Polymer Aerogel[J].ACTA POLYMERICA SINICA,2023,54(08):1131-1138. DOI: 10.11777/j.issn1000-3304.2023.23044.
介绍了一种聚合物基吸湿材料制备新方法,使用含有LiCl的聚合物水溶液制备了不溶于水且含有LiCl的聚合物气凝胶. 该气凝胶在25 ℃和80%相对湿度的条件下,24 h的吸水量高达3.97 g/g,不仅远远高于传统无机吸湿材料,且高于所见文献报道的所有聚合物基吸湿材料的数据. 制备这种新型吸湿材料的聚合物是苯乙烯-马来酸酐交替共聚物,其具有聚集诱导发光性能,因此可以通过发光强度监测新材料的吸湿量.
Dehumidification is closely related to the quality of human life
microbial growth
material corrosion and food storage. Traditional inorganic desiccant materials are not only with low moisture absorption and efficiency
but also with high energy consumption in their preparation and difficult to recycle. Polymer-based hygroscopic materials are expected to overcome these problems and replace conventional hygroscopic materials. In this work
we present a new method for the preparation of polymer-based hygroscopic materials
in which a water-insoluble polymer aerogel containing LiCl was prepared using an aqueous polymer solution containing LiCl. The aerogel can absorb water up to 3.97 g/g at 25 ℃
&
80%RH for 24 h
which is not only much higher than conventional inorganic hygroscopic materials
but also higher than the data reported in the literature for polymer-based hygroscopic materials. The polymer used to prepare this new hygroscopic material is poly(styrene-
alt
-maleic anhydride)
which has aggregation-induced emission properties
so that the hygroscopicity of the new material can be monitored by luminescence intensity.
吸湿聚合物气凝胶聚集诱导发光吸湿量监测
HygroscopicityPolymer aerogelAggregation-induced emissionMoisture absorption monitoring
Mendell M. J.; Macher J. M.; Kumagai K. Measured moisture in buildings and adverse health effects. Indoor Air, 2018, 28(4), 488-499. doi:10.1111/ina.12464http://dx.doi.org/10.1111/ina.12464
Cai J.; Li B. Z.; Yu W.; Yao Y. H.; Wang L. X.; Li B. C.; Wang Y. J.; Du C. Q.; Xiong J. Associations of household dampness with asthma, allergies, and airway diseases among preschoolers in two cross-sectional studies in Chongqing, China: Repeated surveys in 2010 and 2019. Environ. Int., 2020, 140, 105752. doi:10.1016/j.envint.2020.105752http://dx.doi.org/10.1016/j.envint.2020.105752
Alves C.; Duarte M.; Ferreira M.; Alves A.; Almeida A.; Cunha Â. Air quality in a school with dampness and mould problems. Air Qual. Atmos. Health, 2016, 9(2), 107-115. doi:10.1007/s11869-015-0319-6http://dx.doi.org/10.1007/s11869-015-0319-6
Labban O.; Chen T. Y.; Ghoniem A. F.; Lienhard J. H.; Norford L. K. Next-generation HVAC: prospects for and limitations of desiccant and membrane-based dehumidification and cooling. Appl. Energy, 2017, 200, 330-346. doi:10.1016/j.apenergy.2017.05.051http://dx.doi.org/10.1016/j.apenergy.2017.05.051
Rambhad K. S.; Walke P. V.; Tidke D. J. Solid desiccant dehumidification and regeneration methods. Renew. Sustain. Energy Rev., 2016, 59, 73-83. doi:10.1016/j.rser.2015.12.264http://dx.doi.org/10.1016/j.rser.2015.12.264
Uthpala T. G. G.; Navaratne S. B.; Thibbotuwawa A. Review on low-temperature heat pump drying applications in food industry: cooling with dehumidification drying method. J. Food Process. Eng., 2020, 43(10), e13502. doi:10.1111/jfpe.13502http://dx.doi.org/10.1111/jfpe.13502
安振华, 叶焱, 许治平, 杨睿. 聚烯烃老化的时空谱: 多因素耦合老化动力学研究. 高分子学报, 2021, 52(11), 1514-1522. doi:10.11777/j.issn1000-3304.2020.20150http://dx.doi.org/10.11777/j.issn1000-3304.2020.20150
Li J. X.; Niu D. Y.; Liu B.; Xu P. W.; Yang W. J.; Lemstra P. J.; Ma P. M. Improvement on the mechanical performance and resistance towards hydrolysis of poly(glycolic acid) via solid-state drawing. Chinese J. Polym. Sci., 2023, 41(1), 14-23. doi:10.1007/s10118-022-2760-yhttp://dx.doi.org/10.1007/s10118-022-2760-y
Ejeian M.; Wang R. Z. Adsorption-based atmospheric water harvesting. Joule, 2021, 5(7), 1678-1703. doi:10.1016/j.joule.2021.04.005http://dx.doi.org/10.1016/j.joule.2021.04.005
Pan Z.; Pitt W. G.; Zhang Y. M.; Wu N.; Tao Y.; Truscott T. T. The upside-down water collection system of syntrichia caninervis. Nat. Plants, 2016, 2, 16076. doi:10.1038/nplants.2016.76http://dx.doi.org/10.1038/nplants.2016.76
Zheng Y. M.; Bai H.; Huang Z. B.; Tian X. L.; Nie F. Q.; Zhao Y.; Zhai J.; Jiang L. Directional water collection on wetted spider silk. Nature, 2010, 463(7281), 640-643. doi:10.1038/nature08729http://dx.doi.org/10.1038/nature08729
Zhao F.; Zhou X. Y.; Liu Y.; Shi Y.; Dai Y. F.; Yu G. H. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater., 2019, 31(10), 1806446. doi:10.1002/adma.201806446http://dx.doi.org/10.1002/adma.201806446
Zheng X.; Wang R. Z.; Ge T. S. Experimental study and performance predication of carbon based composite desiccants for desiccant coated heat exchangers. Int. J. Refrig., 2016, 72, 124-131. doi:10.1016/j.ijrefrig.2016.03.013http://dx.doi.org/10.1016/j.ijrefrig.2016.03.013
Chen K.; Zheng X.; Wang S. N. Investigation on activated carbon-sodium polyacrylate coated aluminum sheets for desiccant coated heat exchanger. Energy, 2022, 245, 123206. doi:10.1016/j.energy.2022.123206http://dx.doi.org/10.1016/j.energy.2022.123206
Liu L.; Kubota M.; Li J.; Kimura H.; Bai Y.; Wu R. J.; Deng L. S.; Huang H. Y.; Kobayashi N. Comparative study on the water uptake kinetics and dehumidification performance of silica gel and aluminophosphate zeolites coatings. Energy, 2022, 242, 122957. doi:10.1016/j.energy.2021.122957http://dx.doi.org/10.1016/j.energy.2021.122957
Zhao Y.; Ge T. S.; Dai Y. J.; Wang R. Z. Experimental investigation on a desiccant dehumidification unit using fin-tube heat exchanger with silica gel coating. Appl. Therm. Eng., 2014, 63(1), 52-58. doi:10.1016/j.applthermaleng.2013.10.018http://dx.doi.org/10.1016/j.applthermaleng.2013.10.018
Al-Ezzi A.; Ismael L.; Fayad M.; Jaber A.; Al Jubori A.; Al-Jadir T.; Dhahad H.; Ma H. B.; Yusaf T. Experimental investigation of dehumidification and regeneration of zeolite coated energy exchanger. Int. J. Thermofluids, 2022, 15(6), 100164. doi:10.1016/j.ijft.2022.100164http://dx.doi.org/10.1016/j.ijft.2022.100164
Dai M.; Zhao F.; Fan J. J.; Li Q.; Yang Y.; Fan Z. J.; Ling S. J.; Yu H. P.; Liu S. X.; Li J.; Chen W. S.; Yu G. H. A nanostructured moisture absorbing gel for fast and large-scale passive dehumidification. Adv. Mater., 2022, 34(17), 2200865. doi:10.1002/adma.202200865http://dx.doi.org/10.1002/adma.202200865
Ding Z. X.; Yu X. J.; Ma Z. X.; Wu W.; Zhang L.; Yu D. Y. W.; Cheng D. H. K. On-site measurement and simulation investigation on condensation dehumidification and desiccant dehumidification in Hong Kong. Energy Build., 2022, 254, 111560. doi:10.1016/j.enbuild.2021.111560http://dx.doi.org/10.1016/j.enbuild.2021.111560
Hiremath C. R.; Kadoli R.; Katti V. V. Experimental and theoretical study on dehumidification potential of clay-additives based CaCl2 composite desiccants. Appl. Therm. Eng., 2018, 129, 70-83. doi:10.1016/j.applthermaleng.2017.09.127http://dx.doi.org/10.1016/j.applthermaleng.2017.09.127
Rajamani M.; Mishra V. R.; Maliyekkal S. M. Bundled-firewood like AlOOH-CaCl2 nanocomposite desiccant. Chem. Eng. J., 2017, 323, 171-179. doi:10.1016/j.cej.2017.04.084http://dx.doi.org/10.1016/j.cej.2017.04.084
Zheng X.; Ge T. S.; Hu L. M.; Wang R. Z. Development and characterization of mesoporous silicate-LiCl composite desiccants for solid desiccant cooling systems. Ind. Eng. Chem. Res., 2015, 54(11), 2966-2973. doi:10.1021/ie504948jhttp://dx.doi.org/10.1021/ie504948j
Ma Q. L.; Zheng X. Preparation and characterization of thermo-responsive composite for adsorption-based dehumidification and water harvesting. Chem. Eng. J., 2022, 429, 132498. doi:10.1016/j.cej.2021.132498http://dx.doi.org/10.1016/j.cej.2021.132498
Lei C. X.; Guo Y. H.; Guan W. X.; Lu H. Y.; Shi W.; Yu G. H. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. Int. Ed., 2022, 61(13), e202200271. doi:10.1002/anie.202200271http://dx.doi.org/10.1002/anie.202200271
Guo Y. H.; Guan W. X.; Lei C. X.; Lu H. Y.; Shi W.; Yu G. H. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun., 2022, 13(1), 2761. doi:10.1038/s41467-022-30505-2http://dx.doi.org/10.1038/s41467-022-30505-2
Zhang Y. F.; Wu L.; Wang X. F.; Yu J. Y.; Ding B. Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nat. Commun., 2020, 11(1), 3302. doi:10.1038/s41467-020-17118-3http://dx.doi.org/10.1038/s41467-020-17118-3
Nong Y. L.; Fan B. J.; Bao X. M.; Xu B.; Zhou M.; Yu Y. Y.; Wang Q.; Wang P. Fabrication of hygroscopic photothermal fibroin-based aerogels for dehumidification and solar-driven water harvesting. Mater. Today Commun., 2022, 32, 103984. doi:10.1016/j.mtcomm.2022.103984http://dx.doi.org/10.1016/j.mtcomm.2022.103984
刘云鸿, 彭新艳, 徐文涛, 王汉春. 基于聚琥珀酰亚胺衍生物仿生超亲水表面的制备及性能. 高分子学报, 2022, 53(3), 279-288. doi:10.11777/j.issn1000-3304.2021.21273http://dx.doi.org/10.11777/j.issn1000-3304.2021.21273
Yao Y.; Zhang X. H.; Guo Z. Y.; Liu W. L.; Hu C. X.; Ru Y.; Zhang L. D.; Jiang C.; Qiao J. L. Preparation and application of recyclable polymer aerogels from styrene-maleic anhydride alternating copolymers. Chem. Eng. J., 2023, 455, 140363. doi:10.1016/j.cej.2022.140363http://dx.doi.org/10.1016/j.cej.2022.140363
胡蓉, 辛德华, 秦安军, 唐本忠. 聚集诱导发光聚合物. 高分子学报, 2018, (2), 132-144. doi:10.11777/j.issn1000-3304.2018.17280http://dx.doi.org/10.11777/j.issn1000-3304.2018.17280
Ge T. S.; Zhang J. Y.; Dai Y. J.; Wang R. Z. Experimental study on performance of silica gel and potassium formate composite desiccant coated heat exchanger. Energy, 2017, 141, 149-158. doi:10.1016/j.energy.2017.09.090http://dx.doi.org/10.1016/j.energy.2017.09.090
Lu H. Y.; Shi W.; Zhang J. H.; Chen A. C.; Guan W. X.; Lei C. X.; Greer J. R.; Boriskina S. V.; Yu G. H. Tailoring the desorption behavior of hygroscopic gels for atmospheric water harvesting in arid climates. Adv. Mater., 2022, 34(37), 2205344. doi:10.1002/adma.202205344http://dx.doi.org/10.1002/adma.202205344
Wang X. L.; Cai W. J.; Lu J. G.; Sun Y. X.; Ding X. D. A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system. Appl. Energy, 2013, 111, 449-455. doi:10.1016/j.apenergy.2013.05.026http://dx.doi.org/10.1016/j.apenergy.2013.05.026
0
Views
86
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution