浏览全部资源
扫码关注微信
同济大学材料科学与工程学院高分子材料系 上海 201804
Published:20 June 2023,
Published Online:25 April 2023,
Received:04 March 2023,
Accepted:03 April 2023
扫 描 看 全 文
滕润鑫,范震,杜建忠.肿瘤诊疗多肽/聚氨基酸自组装纳米材料[J].高分子学报,2023,54(06):853-869.
Teng Run-xin,Fan Zhen,Du Jian-zhong.Nanomaterials Self-assembled from Peptide/Poly(amino acid) for Cancer Theranostics[J].ACTA POLYMERICA SINICA,2023,54(06):853-869.
滕润鑫,范震,杜建忠.肿瘤诊疗多肽/聚氨基酸自组装纳米材料[J].高分子学报,2023,54(06):853-869. DOI: 10.11777/j.issn1000-3304.2023.23047.
Teng Run-xin,Fan Zhen,Du Jian-zhong.Nanomaterials Self-assembled from Peptide/Poly(amino acid) for Cancer Theranostics[J].ACTA POLYMERICA SINICA,2023,54(06):853-869. DOI: 10.11777/j.issn1000-3304.2023.23047.
多肽/聚氨基酸分子由于优异的生物相容性、序列可控性和高生物活性等特点,已经被广泛应用于肿瘤诊疗等生物医学领域. 然而,这些分子仍然存在一定的缺陷,如光学性质不佳、半衰期短与清除速率快等. 本文简述了通过对多肽/聚氨基酸分子的序列设计、侧链修饰和自组装条件进行调控,赋予其可控的光学性质以用于生物成像,更优异的药代动力学和药效学以获得更好的治疗效果. 重点介绍了该领域以及本课题组近期关于多肽/聚氨基酸自组装纳米材料的构筑理念及其在肿瘤诊疗领域的应用研究,并对该领域的挑战和未来发展前景进行了展望.
Owing to the excellent biocompatibility
chemical diversity and sequence dependent bioactivity
peptides/poly(amino acids) have been widely used in biomedical applications
especially in tumor theranostics. However
there are still certain drawback of peptide/poly(amino acid) to overcome for future clinical applications
such as limited optical properties
short half-life and fast clearance rate. In this feature article
we describe the sequence design
side chain modification and self-assembled spatial structure of peptide/poly(amino acid). Such factors endow them with additional optical properties and enhanced pharmacokinetic
pharmacodynamic and immunological properties. We focus on the applications of biomaterials self-assembled from peptides/poly(amino acids) in the aspect of tumor diagnosis and treatment. Additionally
we propose important challenges and future prospects of peptide/poly(amino acid)-based biomaterials for tumor diagnosis and treatment.
多肽聚氨基酸自组装肿瘤诊疗
PeptidePoly(amino acid)Self-assemblyTumor theranostics
Lam K. S.; Salmon S. E.; Hersh E. M.; Hruby V. J.; Kazmierski W. M.; Knapp R. J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature, 1991, 354(6348), 82-84. doi:10.1038/354082a0http://dx.doi.org/10.1038/354082a0
Sinha N. J.; Langenstein M. G.; Pochan D. J.; Kloxin C. J.; Saven J. G. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem. Rev., 2021, 121(22), 13915-13935. doi:10.1021/acs.chemrev.1c00712http://dx.doi.org/10.1021/acs.chemrev.1c00712
刘亚洲, 邢蕊蕊, 闫学海. 寡肽组装体及其肿瘤光热免疫治疗应用. 高分子学报, 2022, 53(10), 1173-1186. doi:10.11777/j.issn1000-3304.2022.22221http://dx.doi.org/10.11777/j.issn1000-3304.2022.22221
冯展威, 代全权, 贺剑云, 白晨曦. 聚氨基酸接枝聚异戊二烯的仿生合成与性能. 高分子学报, 2023, Doi: 10.11777/j.issn1000-3304.2022.223901-8http://dx.doi.org/10.11777/j.issn1000-3304.2022.223901-8.
Rasines Mazo A.; Allison-Logan S.; Karimi F.; Chan N. J. A.; Qiu W. L.; Duan W.; O’Brien-Simpson N. M.; Qiao G. G. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev., 2020, 49(14), 4737-4834. doi:10.1039/c9cs00738ehttp://dx.doi.org/10.1039/c9cs00738e
Wang L.; Wang N. X.; Zhang W. P.; Cheng X. R.; Yan Z. B.; Shao G.; Wang X.; Wang R.; Fu C. Y. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther., 2022, 7(1), 48. doi:10.1038/s41392-022-00904-4http://dx.doi.org/10.1038/s41392-022-00904-4
戚家乐, 姚远, 陶鑫峰, 林绍梁. 含芳香侧链聚类肽的合成与自组装. 高分子学报, 2022, 53(12), 1475-1483. doi:10.11777/j.issn1000-3304.2022.22195http://dx.doi.org/10.11777/j.issn1000-3304.2022.22195
Merrifield R. B. Solid-phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc., 1963, 85, 2149-2154. doi:10.1021/ja00897a025http://dx.doi.org/10.1021/ja00897a025
杨佳臻, 邹昊洋, 丁建勋, 陈学思. 胱氨酸基聚氨基酸纳米材料的可控合成及其生物医学应用. 高分子学报, 2021, 52(8), 960-977. doi:10.11777/j.issn1000-3304.2021.21115http://dx.doi.org/10.11777/j.issn1000-3304.2021.21115
Meng Y. B.; Wu J. Facile and one-step direct synthesis of poly(valine) as a robust drug nanocarrier for enhanced breast cancer therapy. Chinese J. Polym. Sci., 2022, 40(9), 1016-1027. doi:10.1007/s10118-022-2701-9http://dx.doi.org/10.1007/s10118-022-2701-9
Muttenthaler M.; King G. F.; Adams D. J.; Alewood P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325. doi:10.1038/s41573-020-00135-8http://dx.doi.org/10.1038/s41573-020-00135-8
Singh S. B. Discovery and development of dolastatin 10-derived antibody drug conjugate anticancer drugs. J. Nat. Prod., 2022, 85(3), 666-687. doi:10.1021/acs.jnatprod.1c01135http://dx.doi.org/10.1021/acs.jnatprod.1c01135
Wang L. H.; Dong C.; Li X.; Han W. Y.; Su X. L. Anticancer potential of bioactive peptides from animal sources. Oncol. Rep., 2017, 38(2), 637-651. doi:10.3892/or.2017.5778http://dx.doi.org/10.3892/or.2017.5778
Zhang J. H.; Wang Y. C.; Rodriguez B. J.; Yang R. S.; Yu B.; Mei D. Q.; Li J. B.; Tao K.; Gazit E. Microfabrication of peptide self-assemblies: inspired by nature towards applications. Chem. Soc. Rev., 2022, 51(16), 6936-6947. doi:10.1039/d2cs00122ehttp://dx.doi.org/10.1039/d2cs00122e
Huo Y. H.; Hu J.; Yin Y. Y.; Liu P.; Cai K. Y.; Ji W. Self-assembling peptide-based functional biomaterials. ChemBioChem, 2023, 24(2), e202200582. doi:10.1002/cbic.202200582http://dx.doi.org/10.1002/cbic.202200582
Bouck G.; Brown, D. Self-assembly in development. Annu. Rev. Plant Physiol., 2003, 27(1), 71-94.
Zhu L.; Zhang M. Q.; Jing H. R.; Zhang X. P.; Xu L. L.; Ma R. J.; Huang F.; Shi L. Q. Bioinspired self-assembly nanochaperone inhibits tau-derived PHF6 peptide aggregation in alzheimer’s disease. Chinese J. Polym. Sci., 2022, 40(9), 1062-1070. doi:10.1007/s10118-022-2799-9http://dx.doi.org/10.1007/s10118-022-2799-9
Khanra S.; Abdullah-Al Mamun M.; Ferreira F. F.; Ghosh K.; Guha S. Functionalized self-assembled peptide nanotubes with cobalt ferrite nanoparticles for applications in organic electronics. ACS Appl. Nano Mater., 2018, 1(3), 1175-1187. doi:10.1021/acsanm.7b00344http://dx.doi.org/10.1021/acsanm.7b00344
Adler-Abramovich L.; Marco P.; Arnon Z. A.; Creasey R. C. G.; Michaels T. C. T.; Levin A.; Scurr D. J.; Roberts C. J.; Knowles T. P. J.; Tendler S. J. B.; Gazit E. Controlling the physical dimensions of peptide nanotubes by supramolecular polymer coassembly. ACS Nano, 2016, 10(8), 7436-7442. doi:10.1021/acsnano.6b01587http://dx.doi.org/10.1021/acsnano.6b01587
Schnaider L.; Brahmachari S.; Schmidt N. W.; Mensa B.; Shaham-Niv S.; Bychenko D.; Adler-Abramovich L.; Shimon L. J. W.; Kolusheva S.; DeGrado W. F.; Gazit E. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat. Commun., 2017, 8(1), 1365. doi:10.1038/s41467-017-01447-xhttp://dx.doi.org/10.1038/s41467-017-01447-x
Wang S. T.; Lin Y. Y.; Spencer R. K.; Thomas M. R.; Nguyen A. I.; Amdursky N.; Pashuck E. T.; Skaalure S. C.; Song C. Y.; Parmar P. A.; Morgan R. M.; Ercius P.; Aloni S.; Zuckermann R. N.; Stevens M. M. Sequence-dependent self-assembly and structural diversity of islet amyloid polypeptide-derived β-sheet fibrils. ACS Nano, 2017, 11(9), 8579-8589. doi:10.1021/acsnano.7b02325http://dx.doi.org/10.1021/acsnano.7b02325
Zhou X.; Cornel E. J.; Fan Z.; He S. S.; Du J. Z. Bone-targeting polymer vesicles for effective therapy of osteoporosis. Nano Lett., 2021, 21(19), 7998-8007. doi:10.1021/acs.nanolett.1c02150http://dx.doi.org/10.1021/acs.nanolett.1c02150
Cui H. G.; Muraoka T.; Cheetham A. G.; Stupp S. I. Self-assembly of giant peptide nanobelts. Nano Lett., 2009, 9(3), 945-951. doi:10.1021/nl802813fhttp://dx.doi.org/10.1021/nl802813f
Xu P. F.; Gao L.; Cai C. H.; Lin J. P.; Wang L. Q.; Tian X. H. Helical toroids self-assembled from a binary system of polypeptide homopolymer and its block copolymer. Angew. Chem. Int. Ed., 2020, 59(34), 14281-14285. doi:10.1002/anie.202004102http://dx.doi.org/10.1002/anie.202004102
Tang J. D.; Mura C.; Lampe K. J. Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering. J. Am. Chem. Soc., 2019, 141(12), 4886-4899. doi:10.1021/jacs.8b13363http://dx.doi.org/10.1021/jacs.8b13363
Bhalla S.; Melnekoff D. T.; Aleman A.; Leshchenko V.; Restrepo P.; Keats J.; Onel K.; Sawyer J. R.; Madduri D.; Richter J.; Richard S.; Chari A.; Cho H. J.; Dudley J. T.; Jagannath S.; Laganà A.; Parekh S. Patient similarity network of newly diagnosed multiple myeloma identifies patient subgroups with distinct genetic features and clinical implications. Sci. Adv., 2021, 7(47), eabg9551. doi:10.1126/sciadv.abg9551http://dx.doi.org/10.1126/sciadv.abg9551
Ji W.; Tang Y. M.; Makam P.; Yao Y. F.; Jiao R. R.; Cai K. Y.; Wei G. H.; Gazit E. Expanding the structural diversity and functional scope of diphenylalanine-based peptide architectures by hierarchical coassembly. J. Am. Chem. Soc., 2021, 143(42), 17633-17645. doi:10.1021/jacs.1c07915http://dx.doi.org/10.1021/jacs.1c07915
Zhang C.; Lu H. Helical nonfouling polypeptides for biomedical applications. Chinese J. Polym. Sci., 2022, 40(5), 433-446. doi:10.1007/s10118-022-2688-2http://dx.doi.org/10.1007/s10118-022-2688-2
Wang Q. G.; Yang Z. M.; Zhang X. Q.; Xiao X. D.; Chang C.; Xu B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. Angew. Chem. Int. Ed., 2007, 46(23), 4285-4289. doi:10.1002/anie.200700404http://dx.doi.org/10.1002/anie.200700404
Tian X. B.; Sun F. D.; Zhou X. R.; Luo S. Z.; Chen L. Role of peptide self-assembly in antimicrobial peptides. J. Pept. Sci., 2015, 21(7), 530-539. doi:10.1002/psc.2788http://dx.doi.org/10.1002/psc.2788
Lai Z. H.; Jian Q.; Li G. Y.; Shao C. X.; Zhu Y. J.; Yuan X. J.; Chen H. Y.; Shan A. S. Self-assembling peptide dendron nanoparticles with high stability and a multimodal antimicrobial mechanism of action. ACS Nano, 2021, 15(10), 15824-15840. doi:10.1021/acsnano.1c03301http://dx.doi.org/10.1021/acsnano.1c03301
Li S. K.; Zou Q. L.; Li Y. X.; Yuan C. Q.; Xing R. R.; Yan X. H. Smart peptide-based supramolecular photodynamic metallo-nanodrugs designed by multicomponent coordination self-assembly. J. Am. Chem. Soc., 2018, 140(34), 10794-10802. doi:10.1021/jacs.8b04912http://dx.doi.org/10.1021/jacs.8b04912
Liu Y.; Jiang Z. Y.; Tong S. Z.; Sun Y. F.; Zhang Y.; Zhang J. Y.; Zhao D. Y.; Su Y. Z.; Ding J. X.; Chen X. S. Acidity-triggered transformable polypeptide self-assembly to initiate tumor-specific biomineralization. Adv. Mater., 2023, 2203291. doi:10.1002/adma.202203291http://dx.doi.org/10.1002/adma.202203291
Sun M.; Wang C. Y.; Lv M. C.; Fan Z.; Du J. Z. Mitochondrial-targeting nanoprodrugs to mutually reinforce metabolic inhibition and autophagy for combating resistant cancer. Biomaterials, 2021, 278, 121168. doi:10.1016/j.biomaterials.2021.121168http://dx.doi.org/10.1016/j.biomaterials.2021.121168
Sun M.; Wang C. Y.; Lv M. C.; Fan Z.; Du J. Z. Intracellular self-assembly of peptides to induce apoptosis against drug-resistant melanoma. J. Am. Chem. Soc., 2022, 144(16), 7337-7345. doi:10.1021/jacs.2c00697http://dx.doi.org/10.1021/jacs.2c00697
Wang J.; Liu K.; Xing R. R.; Yan X. H. Peptide self-assembly: thermodynamics and kinetics. Chem. Soc. Rev., 2016, 45(20), 5589-5604. doi:10.1039/c6cs00176ahttp://dx.doi.org/10.1039/c6cs00176a
Hauser C. A.; Zhang S. G. Peptides as biological semiconductors. Nature, 2010, 468(7323), 516-517. doi:10.1038/468516ahttp://dx.doi.org/10.1038/468516a
Kholkin A.; Amdursky N.; Bdikin I.; Gazit E.; Rosenman G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano, 2010, 4(2), 610-614. doi:10.1021/nn901327vhttp://dx.doi.org/10.1021/nn901327v
Yan X. H.; Zhu P. L.; Li J. B. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev., 2010, 39(6), 1877-1890. doi:10.1039/b915765bhttp://dx.doi.org/10.1039/b915765b
Dong R. J.; Zhou Y. F.; Huang X. H.; Zhu X. Y.; Lu Y. F.; Shen J. Functional supramolecular polymers for biomedical applications. Adv. Mater., 2015, 27(3), 498-526. doi:10.1002/adma.201402975http://dx.doi.org/10.1002/adma.201402975
Elgersma S. V.; Ha M.; Yang J. L J.; Michaelis, V. K.; Unsworth, L. D. Charge and peptide concentration as determinants of the hydrogel internal aqueous environment. Materials, 2019, 12(5), 832. doi:10.3390/ma12050832http://dx.doi.org/10.3390/ma12050832
Ulijn R. V.; Smith A. M. Designing peptide based nanomaterials. Chem. Soc. Rev., 2008, 37(4), 664-675. doi:10.1039/b609047hhttp://dx.doi.org/10.1039/b609047h
Zou R. F.; Wang Q.; Wu J. C.; Wu J. X.; Schmuck C.; Tian H. Peptide self-assembly triggered by metal ions. Chem. Soc. Rev., 2015, 44(15), 5200-5219. doi:10.1039/c5cs00234fhttp://dx.doi.org/10.1039/c5cs00234f
Santoso S.; Hwang W.; Hartman H.; Zhang S. G. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett., 2002, 2(7), 687-691. doi:10.1021/nl025563ihttp://dx.doi.org/10.1021/nl025563i
Song Q.; Cheng Z. H.; Kariuki M.; Hall S. C. L.; Hill S. K.; Rho J. Y.; Perrier S. Molecular self-assembly and supramolecular chemistry of cyclic peptides. Chem. Rev., 2021, 121(22), 13936-13995. doi:10.1021/acs.chemrev.0c01291http://dx.doi.org/10.1021/acs.chemrev.0c01291
Nasrolahi Shirazi A.; Tiwari R. K.; Oh D.; Banerjee A.; Yadav A.; Parang K. Efficient delivery of cell impermeable phosphopeptides by a cyclic peptide amphiphile containing tryptophan and arginine. Mol. Pharm., 2013, 10(5), 2008-2020. doi:10.1021/mp400046uhttp://dx.doi.org/10.1021/mp400046u
Ghadiri M. R.; Granja J. R.; Buehler L. K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature, 1994, 369(6478), 301-304. doi:10.1038/369301a0http://dx.doi.org/10.1038/369301a0
Ghadiri M. R.; Granja J. R.; Milligan R. A.; McRee D. E.; Khazanovich N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 1993, 366(6453), 324-327. doi:10.1038/366324a0http://dx.doi.org/10.1038/366324a0
Insua, I.; Montenegro, J. 1D to 2D self assembly of cyclic peptides. J. Am. Chem. Soc., 2020, 142(1), 300-307. doi:10.1021/jacs.9b10582http://dx.doi.org/10.1021/jacs.9b10582
Zhou X.; Yan N.; Cornel E. J.; Cai H. D.; Xue S. B.; Xi H.; Fan Z.; He S. S.; Du J. Z. Bone-targeting polymer vesicles for simultaneous imaging and effective malignant bone tumor treatment. Biomaterials, 2021, 269, 120345. doi:10.1016/j.biomaterials.2020.120345http://dx.doi.org/10.1016/j.biomaterials.2020.120345
李怡静, 龚雪峰, 王冬, 杨洲, 曹晖, 王磊. 基于多肽的药物递送系统研究进展. 高分子学报, 2022, 53(5), 445-456. doi:10.11777/j.issn1000-3304.2021.21369http://dx.doi.org/10.11777/j.issn1000-3304.2021.21369
Zhuang Z. L.; Cai C. H.; Jiang T.; Lin J. P.; Yang C. Y. Self-assembly behavior of rod-coil-rod polypeptide block copolymers. Polymer, 2014, 55(2), 602-610. doi:10.1016/j.polymer.2013.12.016http://dx.doi.org/10.1016/j.polymer.2013.12.016
Dragulescu-Andrasi A.; Rapireddy S.; Frezza B. M.; Gayathri C.; Gil R. R.; Ly D. H. A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J. Am. Chem. Soc., 2006, 128(31), 10258-10267. doi:10.1021/ja0625576http://dx.doi.org/10.1021/ja0625576
Buchberger A.; Simmons C. R.; Fahmi N. E.; Freeman R.; Stephanopoulos N. Hierarchical assembly of nucleic acid/coiled-coil peptide nanostructures. J. Am. Chem. Soc., 2020, 142(3), 1406-1416. doi:10.1021/jacs.9b11158http://dx.doi.org/10.1021/jacs.9b11158
Yokoi H.; Kinoshita T.; Zhang S. G. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl. Acad. Sci. U.S.A., 2005, 102(24), 8414-8419. doi:10.1073/pnas.0407843102http://dx.doi.org/10.1073/pnas.0407843102
Yang P. P.; Luo Q.; Qi G. B.; Gao Y. J.; Li B. N.; Zhang J. P.; Wang L.; Wang H. Host materials transformable in tumor microenvironment for homing theranostics. Adv. Mater., 2017, 29(15), 1605869. doi:10.1002/adma.201605869http://dx.doi.org/10.1002/adma.201605869
Zhang M. Z.; Chen X. X.; Li C.; Shen X. Charge-reversal nanocarriers: an emerging paradigm for smart cancer nanomedicine. J. Control. Release, 2020, 319, 46-62. doi:10.1016/j.jconrel.2019.12.024http://dx.doi.org/10.1016/j.jconrel.2019.12.024
Kennedy B. F.; Wijesinghe P.; Sampson D. D. The emergence of optical elastography in biomedicine. Nat. Photonics, 2017, 11(4), 215-221. doi:10.1038/nphoton.2017.6http://dx.doi.org/10.1038/nphoton.2017.6
Dias G. G.; King A.; de Moliner F.; Vendrell M.; da Silva Júnior E. N. Quinone-based fluorophores for imaging biological processes. Chem. Soc. Rev., 2018, 47(1), 12-27. doi:10.1039/c7cs00553ahttp://dx.doi.org/10.1039/c7cs00553a
Sack I. Magnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imaging. Nat. Rev. Phys., 2023, 5(1), 25-42. doi:10.1038/s42254-022-00543-2http://dx.doi.org/10.1038/s42254-022-00543-2
Dobrucki L. W.; Sinusas A. J. PET and SPECT in cardiovascular molecular imaging. Nat. Rev. Cardiol., 2010, 7(1), 38-47. doi:10.1038/nrcardio.2009.201http://dx.doi.org/10.1038/nrcardio.2009.201
Signore A.; Mather S. J.; Piaggio G.; Malviya G.; Dierckx R. A. Molecular imaging of inflammation/infection: nuclear medicine and optical imaging agents and methods. Chem. Rev., 2010, 110(5), 3112-3145. doi:10.1021/cr900351rhttp://dx.doi.org/10.1021/cr900351r
Liu D. Q.; Cornel E. J.; Du J. Z. Renoprotective angiographic polymersomes. Adv. Funct. Mater., 2021, 31(1), 2007330. doi:10.1002/adfm.202007330http://dx.doi.org/10.1002/adfm.202007330
Liarou E.; Varlas S.; Skoulas D.; Tsimblouli C.; Sereti E.; Dimas K.; Iatrou H. Smart polymersomes and hydrogels from polypeptide-based polymer systems through α-amino acid N-carboxyanhydride ring-opening polymerization. From chemistry to biomedical applications. Prog. Polym. Sci., 2018, 83, 28-78. doi:10.1016/j.progpolymsci.2018.05.001http://dx.doi.org/10.1016/j.progpolymsci.2018.05.001
Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 2006, 114(2), 165-172. doi:10.1289/ehp.8284http://dx.doi.org/10.1289/ehp.8284
Derfus A. M.; Chan W. C. W.; Bhatia S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 2004, 4(1), 11-18. doi:10.1021/nl0347334http://dx.doi.org/10.1021/nl0347334
Lim X. The nanolight revolution is coming. Nature, 2016, 531(7592), 26-28. doi:10.1038/531026ahttp://dx.doi.org/10.1038/531026a
Fan Z.; Sun L. M.; Huang Y. J.; Wang Y. Z.; Zhang M. J. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol., 2016, 11(4), 388-394. doi:10.1038/nnano.2015.312http://dx.doi.org/10.1038/nnano.2015.312
Tao K.; Fan Z.; Sun L. M.; Makam P.; Tian Z.; Ruegsegger M.; Shaham-Niv S.; Hansford D.; Aizen R.; Pan Z.; Galster S.; Ma J. J.; Yuan F.; Si M. S.; Qu S. N.; Zhang M. J.; Gazit E.; Li J. B. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun., 2018, 9(1), 3217. doi:10.1038/s41467-018-05568-9http://dx.doi.org/10.1038/s41467-018-05568-9
He S. Q.; Song J.; Qu J. L.; Cheng Z. Crucial breakthrough of second near-infrared biological window fluorophores: Design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev., 2018, 47(12), 4258-4278. doi:10.1039/c8cs00234ghttp://dx.doi.org/10.1039/c8cs00234g
An H. W.; Hou D. Y.; Zheng R.; Wang M. D.; Zeng X. Z.; Xiao W. Y.; Yan T. D.; Wang J. Q.; Zhao C. H.; Cheng L. M.; Zhang J. M.; Wang L.; Wang Z. Q.; Wang H.; Xu W. H. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma. ACS Nano, 2020, 14(1), 927-936. doi:10.1021/acsnano.9b08209http://dx.doi.org/10.1021/acsnano.9b08209
Lv M. C.; Jan Cornel E.; Fan Z.; Du J. Z. Advances and perspectives of peptide and polypeptide-based materials for biomedical imaging. Adv. Nanobiomed Res., 2021, 1(5), 2000109. doi:10.1002/anbr.202000109http://dx.doi.org/10.1002/anbr.202000109
Buck A. K.; Nekolla S.; Ziegler S.; Beer A.; Krause B. J.; Herrmann K.; Scheidhauer K.; Wester H. J.; Rummeny E. J.; Schwaiger M.; Drzezga A. J. Nucl. Med., 2008, 49(8), 1305-1319. doi:10.2967/jnumed.107.050195http://dx.doi.org/10.2967/jnumed.107.050195
Pant K.; Sedláček O.; Nadar R. A.; Hrubý M.; Stephan H. Radiolabelled polymeric materials for imaging and treatment of cancer: Quo vadis? Adv. Healthcare Mater., 2017, 6(6), 1601115. doi:10.1002/adhm.201601115http://dx.doi.org/10.1002/adhm.201601115
Ehman E. C.; Johnson G. B.; Villanueva-Meyer J. E.; Cha S.; Leynes A. P.; Larson P. E. Z.; Hope T. A. PET/MRI: where might it replace PET/CT? J. Magn. Reson. Imaging, 2017, 46(5), 1247-1262. doi:10.1002/jmri.25711http://dx.doi.org/10.1002/jmri.25711
Torre L. A.; Bray F.; Siegel R. L.; Ferlay J.; Lortet Tieulent J.; Jemal A. Global cancer statistics, 2012. Ca-Cancer J. Clin., 2015, 65, 87-108.
Davenport A. P.; Scully C. C. G.; de Graaf C.; Brown A. J. H.; Maguire J. J. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov., 2020, 19(6), 389-413. doi:10.1038/s41573-020-0062-zhttp://dx.doi.org/10.1038/s41573-020-0062-z
胡祖佳, 颜舒婷, 戚家乐, 陶鑫峰, 林绍梁. 基于NNTA可控聚合的环形聚类肽合成与表征. 高分子学报, 2021, 52(7), 708-716. doi:10.11777/j.issn1000-3304.2020.20284http://dx.doi.org/10.11777/j.issn1000-3304.2020.20284
Zheng P.; Liu Y.; Chen J. J.; Xu W. G.; Li G.; Ding J. X. Targeted pH-responsive polyion complex micelle for controlled intracellular drug delivery. Chin. Chem. Lett., 2020, 31(5), 1178-1182. doi:10.1016/j.cclet.2019.12.001http://dx.doi.org/10.1016/j.cclet.2019.12.001
Jiang J.; Shen N.; Ci T. Y.; Tang Z. H.; Gu Z.; Li G.; Chen X. S. Combretastatin A4 nanodrug-induced MMP9 amplification boosts tumor-selective release of doxorubicin prodrug. Adv. Mater., 2019, 31(44), e1904278. doi:10.1002/adma.201904278http://dx.doi.org/10.1002/adma.201904278
Fan Z.; Chang Y.; Cui C. C.; Sun L. M.; Wang D. H.; Pan Z.; Zhang M. J. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat. Commun., 2018, 9(1), 2605. doi:10.1038/s41467-018-04763-yhttp://dx.doi.org/10.1038/s41467-018-04763-y
Davis M. E.; Chen Z. G.; Shin D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782. doi:10.1038/nrd2614http://dx.doi.org/10.1038/nrd2614
Degors I.; Wang C. F.; Rehman Z. U.; Zuhorn I. S. Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors. Acc. Chem. Res., 2019, 52(7), 1750-1760. doi:10.1021/acs.accounts.9b00177http://dx.doi.org/10.1021/acs.accounts.9b00177
Cao J.; Huang D.; Peppas N. A. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv. Drug Deliv. Rev., 2020, 167, 170-188. doi:10.1016/j.addr.2020.06.030http://dx.doi.org/10.1016/j.addr.2020.06.030
Gao C. Y.; Wang Y.; Ye Z. H.; Lin Z. H.; Ma X.; He Q. Biomedical micro-/nanomotors: from overcoming biological barriers to in vivo imaging. Adv. Mater., 2021, 33(6), e2000512. doi:10.1002/adma.202000512http://dx.doi.org/10.1002/adma.202000512
Xu F. N.; Huang X. H.; Wang Y.; Zhou S. B. A size-changeable collagenase-modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue. Adv. Mater., 2020, 32(16), e1906745. doi:10.1002/adma.201906745http://dx.doi.org/10.1002/adma.201906745
Sun M.; Yue T.; Wang C. Y.; Fan Z.; Gazit E.; Du J. Z. Ultrasound-responsive peptide nanogels to balance conflicting requirements for deep tumor penetration and prolonged blood circulation. ACS Nano, 2022, 16(6), 9183-9194. doi:10.1021/acsnano.2c01407http://dx.doi.org/10.1021/acsnano.2c01407
de Palma M.; Biziato D.; Petrova T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer, 2017, 17(8), 457-474. doi:10.1038/nrc.2017.51http://dx.doi.org/10.1038/nrc.2017.51
0
Views
75
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution