浏览全部资源
扫码关注微信
中国石化北京化工研究院 北京 100013
Wen-xi Ji, E-mail: jiwx.bjhy@sinopec.com
Published:20 September 2023,
Published Online:01 June 2023,
Received:13 March 2023,
Accepted:28 April 2023
扫 描 看 全 文
黄卫军,计文希,张龙贵等.微尺度铜管催化三臂星形聚合物的制备[J].高分子学报,2023,54(09):1312-1319.
Huang Wei-jun,Ji Wen-xi,Zhang Long-gui,et al.Micro-scale Cu Catalyzed Preparation of Three-arm Star Polymers[J].ACTA POLYMERICA SINICA,2023,54(09):1312-1319.
黄卫军,计文希,张龙贵等.微尺度铜管催化三臂星形聚合物的制备[J].高分子学报,2023,54(09):1312-1319. DOI: 10.11777/j.issn1000-3304.2023.23060.
Huang Wei-jun,Ji Wen-xi,Zhang Long-gui,et al.Micro-scale Cu Catalyzed Preparation of Three-arm Star Polymers[J].ACTA POLYMERICA SINICA,2023,54(09):1312-1319. DOI: 10.11777/j.issn1000-3304.2023.23060.
利用微尺度Cu(0)催化可逆失活自由基聚合的方法设计并合成了具有三臂星形结构的聚甲基丙烯酸酯类嵌段共聚物,并通过核磁共振、凝胶渗透色谱、流变等方法对聚合物的结构和性能进行了研究. 首先,设计并搭建了微尺度铜管催化的聚合反应平台,以1
1
1-三(2-溴异丁酰氧甲基)乙烷为引发剂,高效合成了聚甲基丙烯酸甲酯(PMMA)和聚甲基丙烯酸十二烷基酯(PLMA)均聚物,研究表明微尺度铜管催化的可逆失活自由基聚合反应速率快,聚合过程可控,制备的聚合物分子量调节范围宽,分子量分布窄. 通过铜管微反应单元的串联,制备了PMMA-
b
-PLMA共聚物. 实验结果表明微尺度下铜管催化制备的聚甲基丙烯酸酯类嵌段共聚物具有结构可控,分子量可调节,分子量分布窄,分子链为三臂星形结构等特点. 以制备的PMMA-
b
-PLMA和PMMA-
b
-聚甲基丙烯酸十六烷基酯(PMMA-
b
-PHMA)为润滑油添加剂,实现了对烷烃类润滑油缠结性能的响应性调节,提高了润滑油在不同温度下的黏度保持率. 本研究为高效合成和应用三臂星形结构的聚甲基丙烯酸酯类聚合物提供了新的方法.
Polymethacrylate block copolymers with three-arm star structure were designed and synthesized by micro-scale Cu(0)-catalyzed reversible deactivation radical polymerization. The structure and properties of the copolymers were studied by nuclear magnetic resonance
gel permeation chromatograph and rheological. Firstly
micro-scale Cu catalyzed polymerization platform was designed for the synthesis of poly(methyl methacrylate) and poly(laurylmethacrylate) intiated by 1
1
1-tris(2-bromoisobutyryloxymethyl)ethane (3f-BiB). Fast polymerization
controlled reaction process
wide range of molecular weight and narrow distribution were achieved under the micro-scale Cu catalyzed reversible deactivation radical polymerization platform. Poly(methyl methacrylate)-block-poly(dodecyl methacrylate) copolymer was efficiently obtained in the assembled tandem microreactor system. The result demonstrated that controlled structure
adjustable molecular weight
narrow distribution and three-arm star structure were achieved by employing the micro-scale Cu catalyzed copolymerization. Additionally
responsive adjustment of the entanglement performance to the alkane solvents
improved viscosity retention rate of lubricating oil at different temperatures were achieved when the three-arm star polymethacrylate block copolymer was used as lubricating oil additives.
微尺度铜催化可逆失活自由基聚合三臂星形聚合物
Micro-scaleCu catalalyzedReversible deactivation radical polymerizationThree-arm star polymer
Higashihara T.; Hayashi M.; Hirao A. Synthesis of well-defined star-branched polymers by stepwise iterative methodology using living anionic polymerization. Prog. Polym. Sci., 2011, 36(3), 323-375. doi:10.1016/j.progpolymsci.2010.08.001http://dx.doi.org/10.1016/j.progpolymsci.2010.08.001
Koda Y.; Terashima T.; Sawamoto M. Fluorous microgel star polymers: selective recognition and separation of polyfluorinated surfactants and compounds in water. J. Am. Chem. Soc., 2014, 136(44), 15742-15748. doi:10.1021/ja508818jhttp://dx.doi.org/10.1021/ja508818j
吴鹏, 申迎华, 耿文博, 贾兰, 刘旭光, 郭兴梅, 杜海燕, 戴胜. 多重响应性杂臂星形聚合物的RAFT聚合合成及性能研究. 高分子学报, 2015, (9), 1114-1120. doi:10.11777/j.issn1000-3304.2015.15038http://dx.doi.org/10.11777/j.issn1000-3304.2015.15038
Hirao A.; Hayashi M.; Ito S.; Goseki R.; Higashihara T.; Hadjichristidis N. Star-branched polymers(star polymers). Anionic Polym., 2015, 659-718. doi:10.1007/978-4-431-54186-8_14http://dx.doi.org/10.1007/978-4-431-54186-8_14
闫强, 隋晓锋, 袁金颖. 活性聚合在星形聚合物合成中的应用. 化学进展, 2008, 20(10), 1562-1571.
Matyjaszewski K.; Xia J. H. Atom transfer radical polymerization. Chem. Rev., 2001, 101(9), 2921-2990. doi:10.1021/cr940534ghttp://dx.doi.org/10.1021/cr940534g
Wang J. S.; Matyjaszewski K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc., 1995, 117(20), 5614-5615. doi:10.1021/ja00125a035http://dx.doi.org/10.1021/ja00125a035
Coessens V.; Pintauer T.; Matyjaszewski K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci., 2001, 26(3), 337-377. doi:10.1016/s0079-6700(01)00003-xhttp://dx.doi.org/10.1016/s0079-6700(01)00003-x
李海峰, 逄增波, 王来来. 基于ATRP接枝改性木质素的研究进展. 高分子学报, 2015, (12), 1363-1376. doi:10.11777/j.issn1000-3304.2015.15172http://dx.doi.org/10.11777/j.issn1000-3304.2015.15172
Sun M. K.; Szczepaniak G.; Dadashi-Silab S.; Lin T. C.; Kowalewski T.; Matyjaszewski K. Cu-catalyzed atom transfer radical polymerization: the effect of cocatalysts. Macromol. Chem. Phys., 2023, 224(3), 2200347. doi:10.1002/macp.202200347http://dx.doi.org/10.1002/macp.202200347
Zhang M. F.; Russell T. P. Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization. Macromolecules, 2006, 39(10), 3531-3539. doi:10.1021/ma060128mhttp://dx.doi.org/10.1021/ma060128m
Tan S. B.; Li J. J.; Zhang Z. C. Study of chain transfer reaction to solvents in the initiation stage of atom transfer radical polymerization. Macromolecules, 2011, 44(20), 7911-7916. doi:10.1021/ma201942zhttp://dx.doi.org/10.1021/ma201942z
Tan S. B.; Liu E. Q.; Zhang Q. P.; Zhang Z. C. Controlled hydrogenation of P(VDF-co-CTFE) to prepare P(VDF-co-TrFE-co-CTFE) in the presence of CuX (X = Cl, Br) complexes. Chem. Commun., 2011, 47(15), 4544-4546. doi:10.1039/c1cc00106jhttp://dx.doi.org/10.1039/c1cc00106j
Percec V.; Guliashvili T.; Ladislaw J. S.; Wistrand A.; Stjerndahl A.; Sienkowska M. J.; Monteiro M. J.; Sahoo S. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by set at 25 ℃. J. Am. Chem. Soc., 2006, 128(43), 14156-14165. doi:10.1021/ja065484zhttp://dx.doi.org/10.1021/ja065484z
Percec V.; Popov A. V.; Ramirez-Castillo E.; Monteiro M.; Barboiu B.; Weichold O.; Asandei A. D.; Mitchell C. M. Aqueous room temperature metal-catalyzed living radical polymerization of vinyl chloride. J. Am. Chem. Soc., 2002, 124(18), 4940-4941. doi:10.1021/ja0256055http://dx.doi.org/10.1021/ja0256055
Rosen B. M.; Percec V. Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem. Rev., 2009, 109(11), 5069-5119. doi:10.1021/cr900024jhttp://dx.doi.org/10.1021/cr900024j
Zhang N.; Samanta S. R.; Rosen B. M.; Percec V. Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis. Chem. Rev., 2014, 114(11), 5848-5958. doi:10.1021/cr400689shttp://dx.doi.org/10.1021/cr400689s
Simula A.; Nikolaou V.; Alsubaie F.; Anastasaki A.; Haddleton D. M. The effect of ligand, solvent and Cu(0) source on the efficient polymerization of polyether acrylates and methacrylates in aqueous and organic media. Polym. Chem., 2015, 6(32), 5940-5950. doi:10.1039/c5py00887ehttp://dx.doi.org/10.1039/c5py00887e
Alsubaie F.; Anastasaki A.; Wilson P.; Haddleton D. M. Sequence-controlled multi-block copolymerization of acrylamides via aqueous SET-LRP at 0 ℃. Polym. Chem., 2015, 6(3), 406-417. doi:10.1039/c4py01066chttp://dx.doi.org/10.1039/c4py01066c
Samanta S. R.; Nikolaou V.; Keller S.; Monteiro M. J.; Wilson D. A.; Haddleton D. M.; Percec V. Aqueous SET-LRP catalyzed with "in situ" generated Cu(0) demonstrates surface mediated activation and bimolecular termination. Polym. Chem., 2015, 6(11), 2084-2097. doi:10.1039/c4py01748jhttp://dx.doi.org/10.1039/c4py01748j
Nikolaou V.; Anastasaki A.; Alsubaie F.; Simula A.; Fox D. J.; Haddleton D. M. Copper(ii) gluconate (a non-toxic food supplement/dietary aid) as a precursor catalyst for effective photo-induced living radical polymerisation of acrylates. Polym. Chem., 2015, 6(19), 3581-3585. doi:10.1039/c5py00406chttp://dx.doi.org/10.1039/c5py00406c
Chan N.; Cunningham M. F.; Hutchinson R. A. Copper-mediated controlled radical polymerization in continuous flow processes: synergy between polymer reaction engineering and innovative chemistry. J. Polym. Sci. Poly. Chem., 2013, 51(15), 3081-3096. doi:10.1002/pola.26711http://dx.doi.org/10.1002/pola.26711
Nguyen N. H.; Percec V. Acid dissolution of copper oxides as a method for the activation of Cu(0) wire catalyst for SET-LRP. J. Polym. Sci. Poly. Chem., 2011, 49(19), 4241-4252. doi:10.1002/pola.24866http://dx.doi.org/10.1002/pola.24866
Nguyen N. H.; Leng X. F.; Sun H. J.; Percec V. Single-electron transfer-living radical polymerization of oligo(ethylene oxide) methyl ether methacrylate in the absence and presence of air. J. Polym. Sci. Poly. Chem., 2013, 51(15), 3110-3122. doi:10.1002/pola.26718http://dx.doi.org/10.1002/pola.26718
Nguyen N. H.; Percec V. Dramatic acceleration of SET-LRP of methyl acrylate during catalysis with activated Cu(0) wire. J. Polym. Sci. A, 2010, 48(22), 5109-5119. doi:10.1002/pola.24309http://dx.doi.org/10.1002/pola.24309
Levere M. E.; Willoughby I.; O'Donohue S.; de Cuendias A.; Grice A. J.; Fidge C.; Becer C. R.; Haddleton D. M. Assessment of SET-LRP in DMSO using online monitoring and rapid GPC. Polym. Chem., 2010, 1(7), 1086-1094. doi:10.1039/c0py00113ahttp://dx.doi.org/10.1039/c0py00113a
陈旻. 微通道反应器在聚合领域中的应用研究进展. 浙江化工, 2021, 52(9), 31-36. doi:10.3969/j.issn.1006-4184.2021.09.007http://dx.doi.org/10.3969/j.issn.1006-4184.2021.09.007
袁炜, 刘卫卫, 李倩, 李化毅, 胡友良. 微反应器技术在聚合中的应用研究进展. 高分子通报, 2019, (1), 94-101. doi:10.14028/j.cnki.1003-3726.2019.01.011http://dx.doi.org/10.14028/j.cnki.1003-3726.2019.01.011
Iwasaki T.; Yoshida J. I. Free radical polymerization in microreactors. significant improvement in molecular weight distribution control. Macromolecules, 2005, 38(4), 1159-1163. doi:10.1021/ma048369mhttp://dx.doi.org/10.1021/ma048369m
Kermagoret A.; Wenn B.; Debuigne A.; Jérôme C.; Junkers T.; Detrembleur C. Improved photo-induced cobalt-mediated radical polymerization in continuous flow photoreactors. Polym. Chem., 2015, 6(20), 3847-3857. doi:10.1039/c5py00299khttp://dx.doi.org/10.1039/c5py00299k
Li Z.; Chen W. J.; Zhang Z. B.; Zhang L. F.; Cheng Z. P.; Zhu X. L. A surfactant-free emulsion RAFT polymerization of methyl methacrylate in a continuous tubular reactor. Polym. Chem., 2015, 6(11), 1937-1943. doi:10.1039/c4py01456ahttp://dx.doi.org/10.1039/c4py01456a
Vandenbergh J.; de Moraes Ogawa T.; Junkers T. Precision synthesis of acrylate multiblock copolymers from consecutive microreactor RAFT polymerizations. J. Polym. Sci. Poly. Chem., 2013, 51(11), 2366-2374. doi:10.1002/pola.26593http://dx.doi.org/10.1002/pola.26593
Parida D.; Serra C. A.; Garg D. K.; Hoarau Y.; Bally F.; Muller R.; Bouquey M. Coil flow inversion as a route to control polymerization in microreactors. Macromolecules, 2014, 47(10), 3282-3287. doi:10.1021/ma5001628http://dx.doi.org/10.1021/ma5001628
Zhu N.; Huang W. J.; Hu X.; Liu Y. H.; Fang Z.; Guo K. Chemoselective polymerization platform for flow synthesis of functional polymers and nanoparticles. Chem. Eng. J., 2018, 333, 43-48. doi:10.1016/j.cej.2017.09.143http://dx.doi.org/10.1016/j.cej.2017.09.143
Kundu S.; Bhangale A. S.; Wallace W. E.; Flynn K. M.; Guttman C. M.; Gross R. A.; Beers K. L. Continuous flow enzyme-catalyzed polymerization in a microreactor. J. Am. Chem. Soc., 2011, 133(15), 6006-6011. doi:10.1021/ja111346chttp://dx.doi.org/10.1021/ja111346c
Nagaki A.; Miyazaki A.; Yoshida J. I. Synthesis of polystyrenes-poly(alkyl methacrylates) block copolymers via anionic polymerization using an integrated flow microreactor system. Macromolecules, 2010, 43(20), 8424-8429. doi:10.1021/ma101663xhttp://dx.doi.org/10.1021/ma101663x
赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合. 化学进展, 2018, 30(9), 1330-1340. doi:10.7536/PC180127http://dx.doi.org/10.7536/PC180127
Nagaki A.; Kawamura K.; Suga S.; Ando T.; Sawamoto M.; Yoshida J. I. Cation pool-initiated controlled/living polymerization using microsystems. J. Am. Chem. Soc., 2004, 126(45), 14702-14703. doi:10.1021/ja044879khttp://dx.doi.org/10.1021/ja044879k
Baeten E.; Verbraeken B.; Hoogenboom R.; Junkers T. Continuous poly(2-oxazoline) triblock copolymer synthesis in a microfluidic reactor cascade. Chem. Commun., 2015, 51(58), 11701-11704. doi:10.1039/c5cc04319khttp://dx.doi.org/10.1039/c5cc04319k
郝茗, 于运花. 基于微反应器的阳离子聚合研究进展. 山东化工, 2022, 51(14), 108-110. doi:10.3969/j.issn.1008-021X.2022.14.033http://dx.doi.org/10.3969/j.issn.1008-021X.2022.14.033
Hu M.; Xia Y.; McKenna G. B.; Kornfield J. A.; Grubbs R. H. Linear rheological response of a series of densely branched brush polymers. Macromolecules, 2011, 44(17), 6935-6943. doi:10.1021/ma2009673http://dx.doi.org/10.1021/ma2009673
0
Views
19
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution