浏览全部资源
扫码关注微信
1.青岛科技大学,高分子科学与工程学院 山东省教育厅生物基高分子材料重点实验室,青岛 266042
2.青岛科技大学,化工学院,青岛 266042
Yong Shen, E-mail: shenyong@qust.edu.cn
Zhi-bo Li, E-mail: zbli@qust.edu.cn
Published:20 September 2023,
Published Online:26 May 2023,
Received:14 March 2023,
Accepted:28 March 2023
扫 描 看 全 文
赵东方,李峥,沈勇等.苯甲氧基氧杂环内酯的合成及开环聚合研究[J].高分子学报,2023,54(09):1303-1311.
Zhao Dong-fang,Li Zheng,Shen Yong,et al.Synthesis and Ring-opening Polymerization of Benzoxy Substituted Oxa-lactones[J].ACTA POLYMERICA SINICA,2023,54(09):1303-1311.
赵东方,李峥,沈勇等.苯甲氧基氧杂环内酯的合成及开环聚合研究[J].高分子学报,2023,54(09):1303-1311. DOI: 10.11777/j.issn1000-3304.2023.23061.
Zhao Dong-fang,Li Zheng,Shen Yong,et al.Synthesis and Ring-opening Polymerization of Benzoxy Substituted Oxa-lactones[J].ACTA POLYMERICA SINICA,2023,54(09):1303-1311. DOI: 10.11777/j.issn1000-3304.2023.23061.
从聚(3-羟基丁酸酯) (P3HB)的醇解产物(
R
)-3-羟基丁酸甲酯出发,高效地合成了2个氧杂环内酯非对映异构体单体((3
R
7
R
)-
M1
和(3
S
7
R
)-
M2
). 苯氧甲基的引入使2个非对映异构体有较大极性差异,因而可以通过柱层析分离. 以MeAl[salen]为催化剂,BnOH为引发剂实现了单体的可控开环聚合,得到了分子量(
M
n
)可控和末端官能团明确的P((3
R
7
R
)-
M1
)和P((3
S
7
R
)-
M2
)聚合物. 利用基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF MS)和核磁共振氢谱(
1
H-NMR)表征聚合物的链结构,示差扫描量热法(DSC)表征证明了P((3
S
7
R
)-
M2
)为半结晶聚酯. 在1
3
5-均三甲苯的稀溶液中,使用辛酸亚锡(Sn(Oct)
2
)催化解聚实现了P((3
R
7
R
)-
M1
)的化学回收. 这种化学回收策略实现了P3HB的升级回收,延长了材料的生命周期,并拓展了高价值可闭环回收聚醚酯的种类.
This study described the efficient synthesis of two oxolactone monomers ((3
R
7
R
)-
M1
and (3
S
7
R
)-
M2
). The monomers were synthesized using (
R
)-methyl-3-hydroxybutyrate
which is an alcoholysis product of poly(3-hydroxybutyrate) (P3HB). The introduction of phenoxymethyl resulted in diastereoisomers with different polarity that could be separated by column chromatography. The monomers were polymerized
via
ring-opening polymerization using MeAl[salen] as the catalyst
and the polymerization behaviour was investigated. P((3
R
7
R
)-
M1
) and P((3
S
7
R
)-
M2
) with controlled molecular weights and chain-end groups were prepared. The linear structure of the polymers was further confirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) and
1
H nuclear magnetic resonance (
1
H-NMR). P((3
S
7
R
)-
M2
) is a semi-crystalline polyester. Additionally
stannous octanoate (Sn(Oct)
2
was used as a catalyst to achieve the depolymerization and recovery of the P((3
R
7
R
)-
M1
) in a dilute solution of 1
3
5-mono-trimethylbenzene. This strategy enables P3HB upcycling
extending the material's life cycle and expanding the range of high-value closed-loop recyclable polyether esters.
开环聚合闭合循环可降解聚酯聚醚酯聚(3-羟基丁酸酯)
Ring-opening polymerizationClosed-loop recyclingDegradable polyesterPoly(ether-ester)Poly(3-hydroxybutyrate)
Geyer R.; Jambeck J. R.; Law K. L. Production, use, and fate of all plastics ever made. Sci. Adv., 2017, 3(7), e1700782. doi:10.1126/sciadv.1700782http://dx.doi.org/10.1126/sciadv.1700782
Jambeck J. R.; Geyer R.; Wilcox C.; Siegler T. R.; Perryman M.; Andrady A.; Narayan R.; Law K. L. Marine pollution. Plastic waste inputs from land into the ocean. Science, 2015, 347(6223), 768-771. doi:10.1126/science.1260352http://dx.doi.org/10.1126/science.1260352
沈勇, 李志波. 有机磷腈碱催化环内酯开环聚合制备可降解聚酯研究进展. 高分子学报, 2020, 51(8), 777-790. doi:10.11777/j.issn1000-3304.2020.20050http://dx.doi.org/10.11777/j.issn1000-3304.2020.20050
MacLeod M.; Arp H. P. H.; Tekman M. B.; Jahnke A. The global threat from plastic pollution. Science, 2021, 373(6550), 61-65. doi:10.1126/science.abg5433http://dx.doi.org/10.1126/science.abg5433
Jehanno C.; Alty J. W.; Roosen M.; De Meester S.; Dove A. P.; Chen E. Y. X.; Leibfarth F. A.; Sardon H. Critical advances and future opportunities in upcycling commodity polymers. Nature, 2022, 603(7903), 803-814. doi:10.1038/s41586-021-04350-0http://dx.doi.org/10.1038/s41586-021-04350-0
Kakadellis S.; Rosetto G. Achieving a circular bioeconomy for plastics. Science, 2021, 373(6550), 49-50. doi:10.1126/science.abj3476http://dx.doi.org/10.1126/science.abj3476
Lambert S.; Wagner M. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev., 2017, 46(22), 6855-6871. doi:10.1039/c7cs00149ehttp://dx.doi.org/10.1039/c7cs00149e
Mathers R. T. How well can renewable resources mimic commodity monomers and polymers? J. Polym. Sci. A Polym. Chem., 2012, 50(1), 1-15. doi:10.1002/pola.24939http://dx.doi.org/10.1002/pola.24939
Worch J. C.; Dove A. P. 100th Anniversary of macromolecular science viewpoint: toward catalytic chemical recycling of waste (and future) plastics. ACS Macro Lett., 2020, 9(11), 1494-1506. doi:10.1021/acsmacrolett.0c00582http://dx.doi.org/10.1021/acsmacrolett.0c00582
Fagnani D. E.; Tami J. L.; Copley G.; Clemons M. N.; Getzler Y. D. Y. L.; McNeil A. J. 100th Anniversary of macromolecular science viewpoint: redefining sustainable polymers. ACS Macro Lett., 2021, 10(1), 41-53. doi:10.1021/acsmacrolett.0c00789http://dx.doi.org/10.1021/acsmacrolett.0c00789
Keijer T.; Bakker V.; Slootweg J. C. Circular chemistry to enable a circular economy. Nat. Chem., 2019, 11(3), 190-195. doi:10.1038/s41557-019-0226-9http://dx.doi.org/10.1038/s41557-019-0226-9
La mantia F. P. Polymer mechanical recycling: downcycling or upcycling? Prog. Rubber Plast. Recycl. Technol., 2004, 20(1), 11-24. doi:10.1177/147776060402000102http://dx.doi.org/10.1177/147776060402000102
Zhang X.; Sun Y.; Zhang C. J.; Zhang X. H. Upcycling polytetrahydrofuran to polyester. CCS Chem., 2023, 5(5): 1233-1241. doi:10.31635/ccschem.022.202202072http://dx.doi.org/10.31635/ccschem.022.202202072
Shi C.; Clarke R. W.; McGraw M. L., Chen E. Y. Closing the “one monomer-two polymers-one monomer” loop via orthogonal (De)polymerization of a lactone/olefin hybrid. J. Am. Chem. Soc., 2022, 144(5), 2264-2275. doi:10.1021/jacs.1c12278http://dx.doi.org/10.1021/jacs.1c12278
Hong M.; Chen E. Y. X. Chemically recyclable polymers: a circular economy approach to sustainability. Green Chem., 2017, 19(16), 3692-3706. doi:10.1039/c7gc01496ahttp://dx.doi.org/10.1039/c7gc01496a
刘雪辉, 徐世美, 张帆, 汪秀丽, 王玉忠. 高分子材料的化学升级回收. 高分子学报, 2022, 53(9), 1005-1022. doi:10.11777/j.issn1000-3304.2022.22119http://dx.doi.org/10.11777/j.issn1000-3304.2022.22119
Liu Y.; Zhou H.; Guo J. Z.; Ren W. M., Lu X. B. Completely recyclable monomers and polycarbonate: approach to sustainable polymers. Angew. Chem. Int. Ed., 2017, 56(17), 4862-4866. doi:10.1002/anie.201701438http://dx.doi.org/10.1002/anie.201701438
Ügdüler S.; van Geem K. M.; Denolf R.; Roosen M.; Mys N.; Ragaert K.; de Meester S. Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis. Green Chem., 2020, 22(16), 5376-5394. doi:10.1039/d0gc00894jhttp://dx.doi.org/10.1039/d0gc00894j
Li C. J.; Wang L. Y.; Yan Q.; Liu F. S.; Shen Y.; Li Z. B. Rapid and controlled polymerization of bio-sourced δ-caprolactone toward fully recyclable polyesters and thermoplastic elastomers. Angew. Chem. Int. Ed., 2022, 61(16), e202201407. doi:10.1002/anie.202201407http://dx.doi.org/10.1002/anie.202201407
Li J. D.; Liu F. S.; Liu Y. L.; Shen Y.; Li Z. B. Functionalizable and chemically recyclable thermoplastics from chemoselective ring-opening polymerization of bio-renewable bifunctional α-methylene-δ-valerolactone. Angew. Chem. Int. Ed., 2022, 61(32), e202207105. doi:10.1002/anie.202207105http://dx.doi.org/10.1002/anie.202207105
Tang X. Y.; Chen E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem, 2019, 5(2), 284-312. doi:10.1016/j.chempr.2018.10.011http://dx.doi.org/10.1016/j.chempr.2018.10.011
Olsén P.; Odelius K.; Albertsson A. C. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules, 2016, 17(3), 699-709. doi:10.1021/acs.biomac.5b01698http://dx.doi.org/10.1021/acs.biomac.5b01698
朱忆诺, 陶友华. 基于氨基酸基交硫酯单体的闭环回收高分子. 高分子学报, 2022, 53(9), 1023-1031. doi:10.11777/j.issn1000-3304.2022.22102http://dx.doi.org/10.11777/j.issn1000-3304.2022.22102
Ellis L. D.; Rorrer N. A.; Sullivan K. P.; Otto M.; McGeehan J. E.; Román-Leshkov Y.; Wierckx N.; Beckham G. T. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal., 2021, 4(7), 539-556. doi:10.1038/s41929-021-00648-4http://dx.doi.org/10.1038/s41929-021-00648-4
Wang B. B.; Wang Y.; Du S.; Zhu J.; Ma S. Upcycling of thermosetting polymers into high-value materials. Mater. Horiz., 2023, 10(1), 41-51. doi:10.1039/d2mh01128jhttp://dx.doi.org/10.1039/d2mh01128j
Chen G. Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev., 2009, 38(8), 2434-2446. doi:10.1039/b812677chttp://dx.doi.org/10.1039/b812677c
Muiruri J. K.; Yeo J. C. C.; Zhu Q.; Ye E.; Loh X. J., Li Z. Poly(hydroxyalkanoates): production, applications and end-of-life strategies-life cycle assessment nexus. ACS Sustainable Chem. Eng., 2022, 10(11), 3387-3406. doi:10.1021/acssuschemeng.1c08631http://dx.doi.org/10.1021/acssuschemeng.1c08631
Grigore M. E.; Grigorescu R. M.; Iancu L.; Ion R. M.; Zaharia C., Andrei E. R. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates. J. Biomater. Sci. Polym. Ed., 2019, 30(9), 695-712. doi:10.1080/09205063.2019.1605866http://dx.doi.org/10.1080/09205063.2019.1605866
Yang X.; Odelius K.; Hakkarainen M. Microwave-assisted reaction in green solvents recycles PHB to functional chemicals. ACS Sustainable Chem. Eng., 2014, 2(9), 2198-2203. doi:10.1021/sc500397hhttp://dx.doi.org/10.1021/sc500397h
Parodi A.; D'Ambrosio M.; Mazzocchetti L.; Martinez G.; Samorì C.; Torri C.; Galletti P. Chemical recycling of polyhydroxybutyrate (PHB) into bio-based solvents and their use in a circular PHB extraction. ACS Sustainable Chem. Eng., 2021, 9(37), 12575-12583. doi:10.1021/acssuschemeng.1c03299http://dx.doi.org/10.1021/acssuschemeng.1c03299
Li Z.; Shen Y., Li Z. Chemical upcycling of poly(3-hydroxybutyrate) into bicyclic ether-ester monomers toward value-added, degradable, and recyclable poly(ether ester). ACS Sustainable Chem. Eng., 2022, 10(25), 8228-8238. doi:10.1021/acssuschemeng.2c02124http://dx.doi.org/10.1021/acssuschemeng.2c02124
Li Z.; Zhao D. F.; Huang B. Z.; Shen Y.; Li Z. B. Chemical upcycling of poly(3-hydroxybutyrate) (P3HB) toward functional poly(amine-alt-ester) via tandem degradation and ring-opening polymerization. Macromolecules, 2022, 55(21), 9697-9704. doi:10.1021/acs.macromol.2c01548http://dx.doi.org/10.1021/acs.macromol.2c01548
Ren W. M.; Gao H. J.; Yue T. J. Flexible gradient poly(ether-ester) from the copolymerization of epoxides and ε-caprolactone mediated by a hetero-bimetallic complex. Chinese J. Polym. Sci., 2021, 39(8), 1013-1019. doi:10.1007/s10118-021-2559-2http://dx.doi.org/10.1007/s10118-021-2559-2
He G. H.; Liu Y. L.; Liu Y.; Lu X. B. Enantioselective resolution copolymerization of racemic cis-epoxides and cyclic anhydrides mediated by multichiral bimetallic chromium complexes. Macromolecules, 2022, 55(10), 3869-3876. doi:10.1021/acs.macromol.2c00628http://dx.doi.org/10.1021/acs.macromol.2c00628
0
Views
53
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution