浏览全部资源
扫码关注微信
东南大学智能材料研究院/化学化工学院 南京 211189
Hong Yang, E-mail:yangh@seu.edu.cn
Quan Li, E-amil:quanli3273@gmail.com
Published:20 September 2023,
Published Online:18 May 2023,
Received:15 March 2023,
Accepted:12 April 2023
扫 描 看 全 文
刘志洋,姜坤,聂振洲等.软硬段交联共聚物基离子导电弹性体[J].高分子学报,2023,54(09):1333-1342.
Liu Zhi-yang,Jiang Kun,Nie Zhen-zhou,et al.Ionic Conductive Elastomers Based on Soft and Hard Segment Crosslinked Copolymers[J].ACTA POLYMERICA SINICA,2023,54(09):1333-1342.
刘志洋,姜坤,聂振洲等.软硬段交联共聚物基离子导电弹性体[J].高分子学报,2023,54(09):1333-1342. DOI: 10.11777/j.issn1000-3304.2023.23062.
Liu Zhi-yang,Jiang Kun,Nie Zhen-zhou,et al.Ionic Conductive Elastomers Based on Soft and Hard Segment Crosslinked Copolymers[J].ACTA POLYMERICA SINICA,2023,54(09):1333-1342. DOI: 10.11777/j.issn1000-3304.2023.23062.
通过一步点击聚合反应制备了软硬段交联共聚物基锂盐离子导电弹性体,其可作为柔性应变传感器用于监测手指弯曲和摩尔斯电码传输信息. 硬段组分采用液晶基元,使膜在拉伸过程中分子趋于有序排列,增强弹性体的力学性能. 软段组分采用聚乙二醇二甲基丙烯酸酯低聚物(
M
n
= 750 g/mol),不仅能增加离子导电弹性体的断裂伸长率和透明度,而且所含的醚氧链段能解离锂盐和传输锂离子,提高离子导电弹性体的导电率. 通过优化组分间的比例能得到高应变灵敏度和循环稳定的离子导电弹性体.
Flexible sensors can sense external stimuli and convert them into electrical signals that are easy to be analyzed statistically. They have enormous application potential in human motion detection
health monitoring
and human-machine interaction and other fields. It is important to develop flexible sensors with high ductility
transparency
conductivity and stability. Conductive elastomer is the key core material of flexible sensor. At present
transparent flexible sensors mainly use ionic conductive materials
including hydrogels
organic gels
ionic gels and ionic conductive elastomers. Ionic conductive elastomers are composed of ionic conductors and elastic polymer networks
which have conductive mechanism similar to skin
wide operating temperature range
high transparency and excellent reversible tensile-shrinkage performance
which are suitable to be used as transparent flexible sensors for human-machine interaction. In this work
the soft-hard crosslinked copolymer-based lithium ionic conductive elastomers were prepared
via
a one-step click polymerization reaction
and used as the flexible strain sensors for monitoring finger bending and Morse Code transmission information. The hard segment component consists of liquid crystal molecules
which tend to orderly arrange during the membrane stretching process
and enhance the mechanical properties of the elastomer. The soft segment is composed of polyethylene glycol dimethacrylate oligomer (
M
n
= 750 g/mol)
which can not only increase the breaking elongation and transparency of ionic conductive elastomers
but also the ether oxygen segment contained can dissociate and transport lithium ions
and improve the conductivity of ionic conductive elastomers. By optimizing the proportion of components
ion conductive elastomers with different mechanical properties
transparencies
and conductivities can be obtained. The maximum elongation at break is 1280%
the maximum fracture stress is 5.08 MPa
the maximum modulus is 17.21 MPa
the transmittance is over 80%
and the maximum conductivity is 2.5 mS/cm. The ionic conductive elastomers with the best comprehensive properties possess high strain sensitivity with corresponding gauge factor values of 2.89
4.61
and 5.39 in the strain range of 0‒200%
200%‒350%
and 350%‒550%
respectively. This one-step soft-hard segment crosslinked copolymer strategy provides a new idea for preparing high-performance transparent ionic conductive elastomers.
共聚物离子导电弹性体液晶柔性传感
CopolymerIonic conductive elastomerLiquid crystalFlexibilitySensor
Amjadi M.; Kyung K. U.; Park I.; Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater., 2016, 26(11), 1678-1698. doi:10.1002/adfm.201504755http://dx.doi.org/10.1002/adfm.201504755
Rogers J. A.; Someya T.; Huang Y. G. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973), 1603-1607. doi:10.1126/science.1182383http://dx.doi.org/10.1126/science.1182383
Zhao J.; Chi Z. H.; Yang Z.; Chen X. J.; Arnold M. S.; Zhang Y.; Xu J. R.; Chi Z. G.; Aldred M. P. Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale, 2018, 10(13), 5764-5792. doi:10.1039/c7nr09472hhttp://dx.doi.org/10.1039/c7nr09472h
Tang M.; Li Z. L.; Wang K. Q.; Jiang Y. Z.; Tian M.; Qin Y. J.; Gong Y.; Li Z.; Wu L. M. Ultrafast self-healing and self-adhesive polysiloxane towards reconfigurable on-skin electronics. J. Mater. Chem. A, 2022, 10(4), 1750-1759. doi:10.1039/d1ta09096hhttp://dx.doi.org/10.1039/d1ta09096h
Jeong J. W.; Yeo W. H.; Akhtar A.; Norton J. J. S.; Kwack Y. J.; Li S.; Jung S. Y.; Su Y. W.; Lee W.; Xia J.; Cheng H. Y.; Huang Y. G.; Choi W. S.; Bretl T.; Rogers J. A. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater., 2013, 25(47), 6839-6846. doi:10.1002/adma.201301921http://dx.doi.org/10.1002/adma.201301921
Kaltenbrunner M.; Sekitani T.; Reeder J.; Yokota T.; Kuribara K.; Tokuhara T.; Drack M.; Schwödiauer R.; Graz I.; Bauer-Gogonea S.; Bauer S.; Someya T. An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499(7459), 458-463. doi:10.1038/nature12314http://dx.doi.org/10.1038/nature12314
Wu Y.; Zhou S. H.; Yi J.; Wang D. S.; Wu W. Facile fabrication of flexible alginate/polyaniline/graphene hydrogel fibers for strain sensor. J. Eng. Fibers Fabr., 2022, 17, doi: 10.1177/15589250221114641. doi:10.1177/15589250221114641http://dx.doi.org/10.1177/15589250221114641
He G. X.; Lei H.; Sun W. X.; Gu J.; Yu W. T.; Zhang D.; Chen H. Y.; Li Y.; Qin M.; Xue B.; Wang W.; Cao Y. Strong and reversible covalent double network hydrogel based on force-coupled enzymatic reactions. Angew. Chem. Int. Ed., 2022, 61(25), e202201765. doi:10.1002/anie.202201765http://dx.doi.org/10.1002/anie.202201765
Wang C.; Liu Y.; Qu X. C.; Shi B. J.; Zheng Q.; Lin X. B.; Chao S. Y.; Wang C. Y.; Zhou J.; Sun Y.; Mao G. S.; Li Z. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv. Mater., 2022, 34(16), 2105416. doi:10.1002/adma.202105416http://dx.doi.org/10.1002/adma.202105416
Liu X. H.; Miao J. L.; Fan Q.; Zhang W. X.; Zuo X. W.; Tian M. W.; Zhu S. F.; Zhang X. J.; Qu L. J. Recent progress on smart fiber and textile based wearable strain sensors: Materials, fabrications and applications. Adv. Fiber Mater., 2022, 4(3), 361-389. doi:10.1007/s42765-021-00126-3http://dx.doi.org/10.1007/s42765-021-00126-3
Madhavan R. Nanocrack-based ultrasensitive wearable and skin-mountable strain sensors for human motion detection. Mater. Adv., 2022, 3(23), 8665-8676. doi:10.1039/d2ma00897ahttp://dx.doi.org/10.1039/d2ma00897a
Paul S. J.; Elizabeth I.; Gupta B. K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring. ACS Appl. Mater. Interfaces, 2021, 13(7), 8871-8879. doi:10.1021/acsami.1c00946http://dx.doi.org/10.1021/acsami.1c00946
Sun R. J.; Carreira S. C.; Chen Y.; Xiang C. Q.; Xu L. L.; Zhang B.; Chen M. D.; Farrow I.; Scarpa F.; Rossiter J. Stretchable piezoelectric sensing systems for self-powered and wireless health monitoring. Adv. Mater. Technol., 2019, 4(5), 1900100. doi:10.1002/admt.201900100http://dx.doi.org/10.1002/admt.201900100
Yang G. G.; Zhu K. H.; Guo W.; Wu D. R.; Quan X. L.; Huang X.; Liu S. Y.; Li Y. Y.; Fang H.; Qiu Y. Q.; Zheng Q. Y.; Zhu M. L.; Huang J.; Zeng Z. G.; Yin Z. P.; Wu H. Adhesive and hydrophobic bilayer hydrogel enabled on-skin biosensors for high-fidelity classification of human emotion. Adv. Funct. Mater., 2022, 32(29), 2200457. doi:10.1002/adfm.202200457http://dx.doi.org/10.1002/adfm.202200457
Fu X.; Al-Jumaily A. M.; Ramos M.; Meshkinzar A.; Huang X. Y. Stretchable and sensitive sensor based on carbon nanotubes/polymer composite with serpentine shapes via molding technique. J. Biomater. Sci. Polym. Ed., 2019, 30(13), 1227-1241. doi:10.1080/09205063.2019.1627649http://dx.doi.org/10.1080/09205063.2019.1627649
He Z. L.; Zhou G. H.; Byun J. H.; Lee S. K.; Um M. K.; Park B.; Kim T.; Lee S. B.; Chou T. W. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale, 2019, 11(13), 5884-5890. doi:10.1039/c9nr01005jhttp://dx.doi.org/10.1039/c9nr01005j
Kim S. J.; Kil M. S.; Park H. J.; Yoon J. H.; Kim J.; Bae N. H.; Lee K. G.; Choi B. G. Highly stretchable and conductive carbon thread incorporated into elastic rubber for wearable real-time monitoring of sweat during stretching exercise. Adv. Mater. Technol., 2023, 8(4), 2201042. doi:10.1002/admt.202201042http://dx.doi.org/10.1002/admt.202201042
Kumpika T.; Kantarak E.; Sriboonruang A.; Sroila W.; Tippo P.; Thongpan W.; Pooseekheaw P.; Panthawan A.; Jumrus N.; Sanmuangmoon P.; Jhuntama N.; Hankhuntod M.; Nuansri R.; Wiranwetchayan O.; Thongsuwan W.; Singjai P. Stretchable and compressible strain sensors for gait monitoring constructed using carbon nanotube/graphene composite. Mater. Res. Express, 2020, 7(3), 035006. doi:10.1088/2053-1591/ab748dhttp://dx.doi.org/10.1088/2053-1591/ab748d
Yang J. C.; Mun J.; Kwon S. Y.; Park S.; Bao Z. N.; Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater., 2019, 31(48), 1904765. doi:10.1002/adma.201904765http://dx.doi.org/10.1002/adma.201904765
Li K.; Yang W. Y.; Yi M.; Shen Z. G. Graphene-based pressure sensor and strain sensor for detecting human activities. Smart Mater. Struct., 2021, 30(8), 085027. doi:10.1088/1361-665x/ac0d8bhttp://dx.doi.org/10.1088/1361-665x/ac0d8b
Li N.; Li J. C.; Sun W. Q.; Qiu Y. X.; Chen W. Highly stretchable, tough, and self-recoverable cationic guar gum-based hydrogels for flexible sensors. ACS Appl. Polym. Mater., 2022, 4(8), 5717-5727. doi:10.1021/acsapm.2c00668http://dx.doi.org/10.1021/acsapm.2c00668
Shen Y. Y.; Yang W. K.; Hu F. D.; Zheng X. W.; Zheng Y. J.; Liu H.; Algadi H.; Chen K. Ultrasensitive wearable strain sensor for promising application in cardiac rehabilitation. Adv. Compos. Hybrid Mater., 2023, 6(1), 21. doi:10.1007/s42114-022-00610-3http://dx.doi.org/10.1007/s42114-022-00610-3
Zhao D. Y.; Nie B. B.; Qi G. C.; Li S. J.; Zhu Q. C.; Qiu J. J.; Hsu Y.; Zhang Y. D.; Wang W.; Zhang Q. D.; Wei Z. A flexible metal nano-mesh strain sensor with the characteristic of spontaneous functional recovery after fracture damage. Nanoscale, 2022, 14(34), 12409-12417. doi:10.1039/d2nr02493dhttp://dx.doi.org/10.1039/d2nr02493d
Nesser H.; Lubineau G. Strain sensing by electrical capacitive variation: From stretchable materials to electronic interfaces. Adv. Electron. Mater., 2021, 7(10), 2100190. doi:10.1002/aelm.202100190http://dx.doi.org/10.1002/aelm.202100190
Wang J.; Xu J. M.; Chen T.; Song L. L.; Zhang Y. L.; Lin Q. H.; Wang M. J.; Wang F. X.; Ma N. H.; Sun L. N. Wearable human-machine interface based on the self-healing strain sensors array for control interface of unmanned aerial vehicle. Sens. Actuat. A Phys., 2021, 321, 112583. doi:10.1016/j.sna.2021.112583http://dx.doi.org/10.1016/j.sna.2021.112583
Wu Y. Z.; Zhou Y. L.; Asghar W.; Liu Y. W.; Li F. L.; Sun D. D.; Hu C.; Wu Z. G.; Shang J.; Yu Z.; Li R. W.; Yang H. L. Liquid metal-based strain sensor with ultralow detection limit for human-machine interface applications. Adv. Intell. Syst., 2021, 3(10), 2000235. doi:10.1002/aisy.202000235http://dx.doi.org/10.1002/aisy.202000235
Park S.; Parida K.; Lee P. S. Deformable and transparent ionic and electronic conductors for soft energy devices. Adv. Energy Mater., 2017, 7(22), 1701369. doi:10.1002/aenm.201701369http://dx.doi.org/10.1002/aenm.201701369
Wang Q.; Jian M. Q.; Wang C. Y.; Zhang Y. Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater., 2017, 27(9), 1605657. doi:10.1002/adfm.201605657http://dx.doi.org/10.1002/adfm.201605657
Zhang Q.; Liu X.; Duan L. J.; Gao G. H. Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels. Chem. Eng. J., 2019, 365, 10-19. doi:10.1016/j.cej.2019.02.014http://dx.doi.org/10.1016/j.cej.2019.02.014
Deng Y. J.; Li T. B.; Tu Q.; Wang J. Y. Highly stretchable and self-adhesive ionically cross-linked double-network conductive hydrogel sensor for electronic skin. Colloids Surf. A Physicochem. Eng. Asp., 2023, 656, 130363. doi:10.1016/j.colsurfa.2022.130363http://dx.doi.org/10.1016/j.colsurfa.2022.130363
Lee Y. Y.; Kang H. Y.; Gwon S. H.; Choi G. M.; Lim S. M.; Sun J. Y.; Joo Y. C. A strain-insensitive stretchable electronic conductor: PEDOT: PSS/acrylamide organogels. Adv. Mater., 2016, 28(8), 1636-1643. doi:10.1002/adma.201504606http://dx.doi.org/10.1002/adma.201504606
Tie J. F.; Mao Z. P.; Zhang L. P.; Zhong Y.; Sui X. F.; Xu H. Highly sensitive, durable, environmentally tolerant and multimodal composite ionogel-based sensor with an ultrawide response range. Sci. China Mater., 2023, doi: 10.1007/s40843-022-2294-5.http://dx.doi.org/10.1007/s40843-022-2294-5.
Yiming B.; Zhang Z. X.; Lu Y. C.; Liu X. G.; Creton C.; Zhu S. Z.; Jia Z.; Qu S. X. Molecular mechanism underpinning stable mechanical performance and enhanced conductivity of air-aged ionic conductive elastomers. Macromolecules, 2022, 55(11), 4665-4674. doi:10.1021/acs.macromol.2c00161http://dx.doi.org/10.1021/acs.macromol.2c00161
Wang Z. W.; Lai Y. C.; Chiang Y. T.; Scheiger J. M.; Li S.; Dong Z. Q.; Cai Q. Y.; Liu S. D.; Hsu S. H.; Chou C. C.; Levkin P. A. Tough, self-healing, and conductive elastomer─ionic PEGgel. ACS Appl. Mater. Interfaces, 2022, 14(44), 50152-50162. doi:10.1021/acsami.2c14394http://dx.doi.org/10.1021/acsami.2c14394
Niu W. W.; Liu X. K. Stretchable ionic conductors for soft electronics. Macromol. Rapid Commun., 2022, 43(23), 2200512. doi:10.1002/marc.202200512http://dx.doi.org/10.1002/marc.202200512
Dai S. Y.; Li S. K.; Xu G. Y.; Chen C. L. Direct synthesis of polar functionalized polyethylene thermoplastic elastomer. Macromolecules, 2020, 53(7), 2539-2546. doi:10.1021/acs.macromol.0c00083http://dx.doi.org/10.1021/acs.macromol.0c00083
Wang X. H.; Zhan S. N.; Lu Z. Y.; Li J.; Yang X.; Qiao Y. N.; Men Y. F.; Sun J. Q. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater., 2020, 32(50), 2005759. doi:10.1002/adma.202005759http://dx.doi.org/10.1002/adma.202005759
Miranda I.; Souza A.; Sousa P.; Ribeiro J.; Castanheira E. M. S.; Rui L. M.; Minas G. Properties and applications of PDMS for biomedical engineering: a review. J. Funct. Biomater., 2022, 13(1), 2. doi:10.3390/jfb13010002http://dx.doi.org/10.3390/jfb13010002
Wu Y. X.; Jiang W. X.; Zhang X. H.; Wang J. D.; Chen D.; Ma Y. H.; Yang W. T. Highly conductive, transparent, adhesive, and self-healable ionogel based on a deep eutectic solvent with widely adjustable mechanical strength. Macromol. Rapid Commun., 2022, 43(21), 2200480. doi:10.1002/marc.202200480http://dx.doi.org/10.1002/marc.202200480
Yoo J. Y.; Yang J. S.; Chung M. K.; Kim S. H.; Yoon J. B. A review of geometric and structural design for reliable flexible electronics. J. Micromech. Microeng., 2021, 31(7), 074001. doi:10.1088/1361-6439/abfd0ahttp://dx.doi.org/10.1088/1361-6439/abfd0a
Yang B. W.; Yuan W. Z. Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal-mechanical dual sensors and electroluminescent devices. ACS Appl. Mater. Interfaces, 2019, 11(18), 16765-16775. doi:10.1021/acsami.9b01989http://dx.doi.org/10.1021/acsami.9b01989
Li Q. N.; Liu Z. Y.; Zheng S. J.; Li W. Z.; Ren Y. Y.; Li L. L.; Yan F. Three-dimensional printable, highly conductive ionic elastomers for high-sensitivity iontronics. ACS Appl. Mater. Interfaces, 2022, 14(22), 26068-26076. doi:10.1021/acsami.2c06682http://dx.doi.org/10.1021/acsami.2c06682
Ramón-Gimenez L.; Storz R.; Haberl J.; Finkelmann H.; Hoffmann A. Anisotropic ionic mobility of lithium salts in lamellar liquid crystalline polymer networks. Macromol. Rapid Commun., 2012, 33(5), 386-391. doi:10.1002/marc.201100792http://dx.doi.org/10.1002/marc.201100792
Li, Q. Anisotropic Nanomaterials: Preparation, Properties, and Applications. Heidelberg: Springer, 2015. doi:10.1007/978-3-319-18293-3_3http://dx.doi.org/10.1007/978-3-319-18293-3_3
Qian N.; Bisoyi H. K.; Wang M.; Huang S.; Liu Z.; Chen X. M.; Hu J.; Yang H.; Li Q. A visible and near-infrared light-fueled omnidirectional twist-bend crawling robot. Adv. Funct. Mater., 2023, 33, 2214205. doi:10.1002/adfm.202214205http://dx.doi.org/10.1002/adfm.202214205
0
Views
38
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution