浏览全部资源
扫码关注微信
材料先进技术教育部重点实验室 西南交通大学化学学院 成都 610031
Yu Bao, E-mail: baoyu@swjtu.edu.cn
Shu-xun Cui, E-mail: cuishuxun@swjtu.edu.cn
Published:20 September 2023,
Published Online:04 June 2023,
Received:22 March 2023,
Accepted:28 April 2023
扫 描 看 全 文
包鑫鑫,钱露,黄晓波等.聚乙烯醇-碘复合物相互作用的单分子力谱研究[J].高分子学报,2023,54(09):1355-1362.
Bao Xin-xin,Qian Lu,Huang Xiao-bo,et al.Study on the Complex Interaction betweetn Poly(vinyl alcohol) and Iodine Complex by Single-molecule Force Spectroscopy[J].ACTA POLYMERICA SINICA,2023,54(09):1355-1362.
包鑫鑫,钱露,黄晓波等.聚乙烯醇-碘复合物相互作用的单分子力谱研究[J].高分子学报,2023,54(09):1355-1362. DOI: 10.11777/j.issn1000-3304.2023.23067.
Bao Xin-xin,Qian Lu,Huang Xiao-bo,et al.Study on the Complex Interaction betweetn Poly(vinyl alcohol) and Iodine Complex by Single-molecule Force Spectroscopy[J].ACTA POLYMERICA SINICA,2023,54(09):1355-1362. DOI: 10.11777/j.issn1000-3304.2023.23067.
为了更加深入地研究聚乙烯醇(PVA)-碘复合物的最可能结构,利用单分子力谱技术对PVA与碘、直链淀粉与碘的相互作用进行了对照研究. 实验结果显示PVA与碘离子之间并不存在类似于直链淀粉与碘离子的特殊单分子力谱信号,即:PVA与碘不能形成螺旋结构,单链模型不是PVA与碘相互作用的主要方式. 本工作为进一步研究PVA-碘复合物的多链模型奠定了基础.
The poly(vinyl alcohol)(PVA)-iodine complex has been widely used in industry due to its unique optical dichroism. The properties of PVA-iodine composites are closely related to their interaction modes and strength. However
due to the complexity of the studied systems
there is still no consensus on the exact structure of the PVA-iodine complex. According to the number of PVA chains in the complex model
the existing models can be divided into the single-chain model and multi-chain model. The single-chain model is proposed based on the helical structure model of the amylose-iodine complex. Thus
to investigate the most probable structure of the PVA-iodine complex
the interactions between PVA-iodine and amylose-iodine have been investigated by single-molecule force spectroscopy in deionized (DI) water and KI/I
2
solution
respectively. When the single amylose chain is stretched in DI water
the sugar ring will undergo a chair-boat conformational transition
showing a shoulder plateau on the force-extension (
F
-
E
) curves. When it is stretched in KI/I
2
solution
a long plateau (~40 pN) will appear except the shoulder plateau
which corresponds to the unwinding of the helical structure in the amylose-iodine complex. However
the
F
-
E
curves of PVA obtained in the KI/I
2
solution only contain a single peak and do not exhibit a long plateau similar to that of amylose in the KI/I
2
solution. Moreover
the
F
-
E
curves of PVA obtained in DI water and KI/I
2
solutions with different concentrations can be superposed well after normalization. The experimental results show that the interaction between PVA and iodine ions is different from that between amylose and iodine ions. In other words
the PVA-iodine complex does not exist in a helical structure
and the single-chain model is not suitable to describe the interaction between PVA and iodine. This study lays the foundation for further study of the multi-chain model of the PVA-iodine complex.
聚乙烯醇-碘复合物直链淀粉-碘复合物单分子力谱螺旋结构
PVA-iodine complexAmylose-iodine complexSingle-molecule force spectroscopyHelical structure
Staudinger H.; Frey K.; Starck W. Hochmolekulare verbindungen, 9. mitteilung: über poly-vinylacetat und poly-vinylalkohol. Berichte Der Deutschen Chemischen Gesellschaft A B Ser., 1927, 60(8), 1782-1792. doi:10.1002/cber.19270600811http://dx.doi.org/10.1002/cber.19270600811
Zhang R.; Zhang Q. L.; Ji Y. X.; Su F. M.; Meng L. P.; Qi Z. M.; Lin Y. F.; Li X. Y.; Chen X. W.; Lv F.; Li L. B. Stretch-induced complexation reaction between poly(vinyl alcohol) and iodine: an in situ synchrotron radiation small- and wide-angle X-ray scattering study. Soft Matter, 2018, 14(13), 2535-2546. doi:10.1039/c7sm02155khttp://dx.doi.org/10.1039/c7sm02155k
Ohishi K.; Itadani T.; Hayashi T.; Nakai T.; Horii F. Role of boric acid in the formation of poly(vinyl alcohol)-iodine complexes in undrawn films. Polymer, 2010, 51(3), 687-693. doi:10.1016/j.polymer.2009.01.044http://dx.doi.org/10.1016/j.polymer.2009.01.044
Gruev V.; Ortu A.; Lazarus N.; van der Spiegel J.; Engheta N. Fabrication of a dual-tier thin film micropolarization array. Opt. Express, 2007, 15(8), 4994-5007. doi:10.1364/oe.15.004994http://dx.doi.org/10.1364/oe.15.004994
Moulay S. Molecular iodine/polymer complexes. J. Polym. Eng., 2013, 33(5), 389-443. doi:10.1515/polyeng-2012-0122http://dx.doi.org/10.1515/polyeng-2012-0122
Noguchi H.; Jyodai H.; Matsuzawa S. Formation of poly(vinyl alcohol)-iodine complexes in solution. J. Polym. Sci. B Polym. Phys., 1997, 35(11), 1701-1709. doi:10.1002/(sici)1099-0488(199708)35:11<1701::aid-polb4>3.0.co;2-vhttp://dx.doi.org/10.1002/(sici)1099-0488(199708)35:11<1701::aid-polb4>3.0.co;2-v
Bao Y.; Huang X. B.; Xu J.; Cui S. X. Effect of intramolecular hydrogen bonds on the single-chain elasticity of poly(vinyl alcohol): evidencing the synergistic enhancement effect at the single-molecule level. Macromolecules, 2021, 54(15), 7314-7320. doi:10.1021/acs.macromol.1c01251http://dx.doi.org/10.1021/acs.macromol.1c01251
Isemura T.; Takagi T.; Maeda Y.; Imai K. Recovery of enzymatic activity of reduced taka-amylase a and reduced lysozyme by air-oxidation. Biochem. Biophys. Res. Commun., 1961, 5(5), 373-377. doi:10.1016/0006-291x(61)90043-2http://dx.doi.org/10.1016/0006-291x(61)90043-2
Kikukawa K.; Nozakura S. I.; Murahashi S. Effect of 1,2-glycol structure and stereoregularity of poly(vinyl alcohol) on poly(vinyl alcohol)-iodine reactions. Polym. J., 1971, 2(2), 212-219. doi:10.1295/polymj.2.212http://dx.doi.org/10.1295/polymj.2.212
Miyazaki T.; Katayama S.; Funai E. J.; Tsuji Y.; Sakurai S. Role of adsorbed iodine into poly(vinyl alcohol) films drawn in KI/I2 solution. Polymer, 2005, 46(18), 7436-7442. doi:10.1016/j.polymer.2005.05.129http://dx.doi.org/10.1016/j.polymer.2005.05.129
Zwick M. M. Poly(vinyl alcohol)-iodine complexes. J. Appl. Polym. Sci., 1965, 9(7), 2393-2424. doi:10.1002/app.1965.070090706http://dx.doi.org/10.1002/app.1965.070090706
Tebelev L. G.; Mikul'skii G. F.; Korchagina Y. P.; Glikman S. A. Spectrophotometric analysis of the reaction of iodine with solutions of polyvinyl alcohol. Polym. Sci. U S S R, 1965, 7(1), 132-138. doi:10.1016/0032-3950(65)90248-0http://dx.doi.org/10.1016/0032-3950(65)90248-0
Choi Y. S.; Miyasaka K. Structure and properties of poly(vinyl alcohol)-iodine complex formed in the crystal phase of poly(vinyl alcohol) films. J. Appl. Polym. Sci., 1994, 51(4), 613-618. doi:10.1002/app.1994.070510404http://dx.doi.org/10.1002/app.1994.070510404
Yang H.; Horii F. Investigation of the structure of poly(vinyl alcohol)-iodine complex hydrogels prepared from the concentrated polymer solutions. Polymer, 2008, 49(3), 785-791. doi:10.1016/j.polymer.2007.12.009http://dx.doi.org/10.1016/j.polymer.2007.12.009
Bao Y.; Cui S. X. Single-chain inherent elasticity of macromolecules: from concept to applications. Langmuir, 2023, 39(10), 3527-3536. doi:10.1021/acs.langmuir.2c03234http://dx.doi.org/10.1021/acs.langmuir.2c03234
Tian Y. C.; Cao X. D.; Li X.; Zhang H.; Sun C. L.; Xu Y. Z.; Weng W. G.; Zhang W. K.; Boulatov R. A polymer with mechanochemically active hidden length. J. Am. Chem. Soc., 2020, 142(43), 18687-18697. doi:10.1021/jacs.0c09220http://dx.doi.org/10.1021/jacs.0c09220
Tan X. X.; Yu Y.; Liu K.; Xu H. P.; Liu D. S.; Wang Z. Q.; Zhang X. Single-molecule force spectroscopy of selenium-containing amphiphilic block copolymer: toward disassembling the polymer micelles. Langmuir, 2012, 28(25), 9601-9605. doi:10.1021/la301703thttp://dx.doi.org/10.1021/la301703t
Cai W. H.; Bullerjahn J. T.; Lallemang M.; Kroy K.; Balzer B. N.; Hugel T. Angle-dependent strength of a single chemical bond by stereographic force spectroscopy. Chem. Sci., 2022, 13(19), 5734-5740. doi:10.1039/d2sc01077ahttp://dx.doi.org/10.1039/d2sc01077a
Shi S. C.; Wang Z. Y.; Deng Y. B.; Tian F.; Wu Q. S.; Zheng P. Combination of click chemistry and enzymatic ligation for stable and efficient protein immobilization for single-molecule force spectroscopy. CCS Chem., 2022, 4(2), 598-604. doi:10.31635/ccschem.021.202100779http://dx.doi.org/10.31635/ccschem.021.202100779
Zhang X. N.; Kou X. L.; Zhang W.; Zhang W. K. Identification of the new type of G-quadruplex with multiple vacant sites in human telomeric DNA. CCS Chem., 2022, 4(9), 3023-3035. doi:10.31635/ccschem.021.202101436http://dx.doi.org/10.31635/ccschem.021.202101436
Huang W. M.; Wu X.; Gao X.; Yu Y. F.; Lei H.; Zhu Z. S.; Shi Y.; Chen Y. L.; Qin M.; Wang W.; Cao Y. Maleimide-thiol adducts stabilized through stretching. Nat. Chem., 2019, 11(4), 310-319. doi:10.1038/s41557-018-0209-2http://dx.doi.org/10.1038/s41557-018-0209-2
Zhang X. X.; Chen J. L.; Li E. C.; Hu C. G.; Luo S. Z.; He C. Z. Ultrahigh adhesion force between silica-binding peptide SB7 and glass substrate studied by single-molecule force spectroscopy and molecular dynamic simulation. Front. Chem., 2020, 8, 600918. doi:10.3389/fchem.2020.600918http://dx.doi.org/10.3389/fchem.2020.600918
Song Y.; Ma Z. W.; Zhang W. K. Manipulation of a single polymer chain: From the nanomechanical properties to dynamic structure evolution. Macromolecules, 2022, 55(11), 4177-4199. doi:10.1021/acs.macromol.2c00076http://dx.doi.org/10.1021/acs.macromol.2c00076
Yang P.; Song Y.; Feng W.; Zhang W. K. Unfolding of a single polymer chain from the single crystal by air-phase single-molecule force spectroscopy: toward better force precision and more accurate description of molecular behaviors. Macromolecules, 2018, 51(18), 7052-7060. doi:10.1021/acs.macromol.8b01544http://dx.doi.org/10.1021/acs.macromol.8b01544
Qian L.; Cai W. H.; Xu D.; Bao Y.; Lu Z. Y.; Cui S. X. Single-molecule studies reveal that water is a special solvent for amylose and natural cellulose. Macromolecules, 2019, 52(13), 5006-5013. doi:10.1021/acs.macromol.9b00179http://dx.doi.org/10.1021/acs.macromol.9b00179
Lei H.; He C. Z.; Hu C. G.; Li J. L.; Hu X. D.; Hu X. T.; Li H. B. Single-molecule force spectroscopy trajectories of a single protein and its polyproteins are equivalent: a direct experimental validation based on a small protein NuG2. Angew. Chem. Int. Ed., 2017, 56(22), 6117-6121. doi:10.1002/anie.201610648http://dx.doi.org/10.1002/anie.201610648
Kreuzer H. J.; Payne S. H.; Livadaru L. Stretching a macromolecule in an atomic force microscope: statistical mechanical analysis. Biophys. J., 2001, 80(6), 2505-2514. doi:10.1016/s0006-3495(01)76222-4http://dx.doi.org/10.1016/s0006-3495(01)76222-4
Bao Y.; Luo Z. L.; Cui S. X. Environment-dependent single-chain mechanics of synthetic polymers and biomacromolecules by atomic force microscopy-based single-molecule force spectroscopy and the implications for advanced polymer materials. Chem. Soc. Rev., 2020, 49(9), 2799-2827. doi:10.1039/c9cs00855ahttp://dx.doi.org/10.1039/c9cs00855a
Brady J. W. Molecular dynamics simulations of α-D-glucose. J. Am. Chem. Soc., 1986, 108(26), 8153-8160. doi:10.1021/ja00286a006http://dx.doi.org/10.1021/ja00286a006
O'Donoghu P.; Luthey-Schulten Z. A. Barriers to forced transitions in polysaccharides. J. Phys. Chem. B, 2000, 104(44), 10398-10405. doi:10.1021/jp002478vhttp://dx.doi.org/10.1021/jp002478v
Marszalek P. E.; Li H. B.; Oberhauser A. F.; Fernandez J. M. Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proc. Natl. Acad. Sci. U. S. A., 2002, 99(7), 4278-4283. doi:10.1073/pnas.072435699http://dx.doi.org/10.1073/pnas.072435699
Bao Y.; Xu D.; Qian L.; Zhao L.; Lu Z. Y.; Cui S. X. Hydrophilicities of amylose and natural cellulose are regulated by the linkage between sugar rings. Nanoscale, 2017, 9(10), 3382-3385. doi:10.1039/c7nr00198chttp://dx.doi.org/10.1039/c7nr00198c
许俊, 曹楠普, 肖尧鑫, 罗仲龙, 鲍雨, 崔树勋. 聚乙二醇生物相容性与结合水关系的单分子力谱研究. 高分子学报, 2020, 51(7): 754-761. doi:10.11777/j.issn1000-3304.2019.19219http://dx.doi.org/10.11777/j.issn1000-3304.2019.19219
李占东, 鞠华强, 黄飞鹤, 张文科. 聚轮烷互锁结构的单分子力化学研究. 高分子学报, 2022, 53(10), 1279-1286. doi:10.11777/j.issn1000-3304.2022.22209http://dx.doi.org/10.11777/j.issn1000-3304.2022.22209
Li Y. R.; Wen J.; Qin M.; Cao Y.; Ma H. B.; Wang W. Single-molecule mechanics of catechol-iron coordination bonds. ACS Biomater. Sci. Eng., 2017, 3(6), 979-989. doi:10.1021/acsbiomaterials.7b00186http://dx.doi.org/10.1021/acsbiomaterials.7b00186
Bao Y.; Huang X. B.; Xu D.; Xu J.; Jiang L.; Lu Z. Y.; Cui S. X. Bound water governs the single-chain property of Poly(vinyl alcohol) in aqueous environments. Polymer, 2022, 253, 124996. doi:10.1016/j.polymer.2022.124996http://dx.doi.org/10.1016/j.polymer.2022.124996
Cao N. P.; Zhao Y. H.; Chen H. B.; Huang J. Y.; Yu M.; Bao Y.; Wang D. P.; Cui S. X. Poly(ethylene glycol) becomes a supra-polyelectrolyte by capturing hydronium ions in water. Macromolecules, 2022, 55(11), 4656-4664. doi:10.1021/acs.macromol.2c00014http://dx.doi.org/10.1021/acs.macromol.2c00014
Lu S.; Cai W. H.; Cao N. P.; Qian H. J.; Lu Z. Y.; Cui S. X. Understanding the extraordinary flexibility of polydimethylsiloxane through single-molecule mechanics. ACS Mater. Lett., 2022, 4(2), 329-335. doi:10.1021/acsmaterialslett.1c00655http://dx.doi.org/10.1021/acsmaterialslett.1c00655
Tan I.; Flanagan B. M.; Halley P. J.; Whittaker A. K.; Gidley M. J. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules, 2007, 8(3), 885-891. doi:10.1021/bm060988ahttp://dx.doi.org/10.1021/bm060988a
Helbert W.; Chanzy H. Single crystals of V amylose complexed with n-butanol or n-pentanol: structural features and properties. Int. J. Biol. Macromol., 1994, 16(4), 207-213. doi:10.1016/0141-8130(94)90052-3http://dx.doi.org/10.1016/0141-8130(94)90052-3
Le Bail P.; Rondeau C.; Buléon A. Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability. Int. J. Biol. Macromol., 2005, 35(1-2), 1-7. doi:10.1016/j.ijbiomac.2004.09.001http://dx.doi.org/10.1016/j.ijbiomac.2004.09.001
Gessler K.; Usón I.; Takaha T.; Krauss N.; Smith S. M.; Okada S.; Sheldrick G. M.; Saenger W. V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. U. S. A., 1999, 96(8), 4246-4251. doi:10.1073/pnas.96.8.4246http://dx.doi.org/10.1073/pnas.96.8.4246
Zhang Q. M.; Lu Z. Y.; Hu H.; Yang W. T.; Marszalek P. E. Direct detection of the formation of V-amylose helix by single molecule force spectroscopy. J. Am. Chem. Soc., 2006, 128(29), 9387-9393. doi:10.1021/ja057693+http://dx.doi.org/10.1021/ja057693+
Qian L.; Bao Y.; Duan W. L.; Cui S. X. Effects of water content of the mixed solvent on the single-molecule mechanics of amylose. ACS Macro Lett., 2018, 7(6), 672-676. doi:10.1021/acsmacrolett.8b00375http://dx.doi.org/10.1021/acsmacrolett.8b00375
0
Views
40
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution