浏览全部资源
扫码关注微信
上海交通大学化学化工学院 上海 200240
Chang-ming Dong, E-mail: cmdong@sjtu.edu.cn
Published:20 October 2023,
Published Online:04 July 2023,
Received:23 March 2023,
Accepted:28 April 2023
扫 描 看 全 文
宋莹莹,葛玮,董常明.糖基化聚肽纳米囊泡的构筑、蛋白和激动剂共递送及免疫活性[J].高分子学报,2023,54(10):1533-1546.
Song Ying-ying,Ge Wei,Dong Chang-ming.Glycosylated Polypeptide Nanovesicles: Fabrication, Protein and Agonist Codelivery and Immune Activity[J].ACTA POLYMERICA SINICA,2023,54(10):1533-1546.
宋莹莹,葛玮,董常明.糖基化聚肽纳米囊泡的构筑、蛋白和激动剂共递送及免疫活性[J].高分子学报,2023,54(10):1533-1546. DOI: 10.11777/j.issn1000-3304.2023.23069.
Song Ying-ying,Ge Wei,Dong Chang-ming.Glycosylated Polypeptide Nanovesicles: Fabrication, Protein and Agonist Codelivery and Immune Activity[J].ACTA POLYMERICA SINICA,2023,54(10):1533-1546. DOI: 10.11777/j.issn1000-3304.2023.23069.
为构建兼具细胞靶向和免疫活性的生物降解聚合物纳米载体,报道了3种糖基修饰的线形聚肽-含糖树枝化共聚物构筑的纳米囊泡及在蛋白抗原和免疫激动剂共递送载体中的应用. 通过透析法制备了共负载卵清蛋白(OVA)和免疫激动剂咪喹莫特(R837)的糖聚肽纳米囊泡(PNLys-4Man、PNLys-4Gal、PNLys-4Glu),显示出糖基依赖性的促进树突状细胞(DC)熟化的免疫佐剂效应,且甘露糖修饰的纳米囊泡具有靶向DC细胞而增强的免疫活性;施加紫外光促使OVA和R837胞内快速释放,显著提高了DC细胞熟化和免疫相关共刺激因子的分泌水平,说明糖聚肽纳米囊泡及OVA抗原、R837激动剂具有协同促进DC细胞熟化的免疫活性.
Most of polymeric vesicles not only lack the specific recognitions of immune cells and the bioactivities of adjuvants to trigger efficient adaptive immunities
but also lack good biodegradability and biocompatibility
which hamper the immunotherapy applications. To develop biodegradable polymer nano-carries with both immune activity and cell-targeting
three kinds of glycopolypeptide nanovesicles constructed by linear polypeptide-glycodendrimer copolymers were synthesized and the applications in co-delivery of protein antigens and agonists were studied. The glycopolypeptide nanovesicles (PNLys-4Man
PNLys-4Gal
PNLys-4Glu) were fabricated in aqueous solution by a dialysis method
which had similar sugar density
hydrodynamic size of about 100 nm and Zeta potential of about 35 mV
and present sugar-dependent recognition with lectins. Those glycopolypeptide vesicles could co-load ovalbumin (OVA) and imiquimote (R837) in phosphate buffer solution (pH=7.4) to give a hydrodynamic size of about 75 nm
and the loading capacity of OVA and R837 was about 7.5% and about 1.3%
respectively. Moreover
those vesicles showed sugar-dependent adjuvant effects of promoting dendritic cell (DCs) maturation
in which the mannosylated ones enhanced the maturation of DCs to 34.6% compared to the galactosylated ones of 29.4% and the glucosylated ones of 27.7%. These data evidence that the mannosylated glycopolypeptide vesicles exhibited a cell-targeting enhanced immunity. Furthermore
the mannosylated nanovesicles activated the maturation of DCs to secret costimulatory molecules of IL-6 and TNF-
α
and their levels were respectively enhanced by 19.5% and 20.3% than the galactosylated ones
and by 17.7% and 37.4% than the glucosylated ones
further confirming the sugar-dependent maturation effect on DCs. Especially
UV light triggered intracellular rapid co-release of OVA and R837
and the levels of IL-6 and TNF-
α
remarkably enhanced by 2.19-fold and 1.82-fold
demonstrating that OVA antigen and R837 agonist possessed synergistic effect to promote DCs maturation and induce strong immune response. Consequently
this work opens a new avenue to construct the immune cells-targeted biodegradable nanocarriers for delivering antigens and agonists to fight against infectious diseases and cancers.
糖聚肽纳米囊泡蛋白递送激动剂免疫佐剂
GlycopolypeptideNanovesicleProtein deliveryAgonistImmune adjuvant
Valladeau J.; Duvert-Frances V.; Pin J. J.; Kleijmeer M. J.; Ait-Yahia S.; Ravel O.; Vincent C.; Vega F.Jr, Helms A.; Gorman D.; Zurawski S. M.; Zurawski G.; Ford J.; Saeland S.Immature human dendritic cells express asialoglycoprotein receptor isoforms for efficient receptor-mediated endocytosis. J. Immunol., 2001, 167(10), 5767-5774. doi:10.4049/jimmunol.167.10.5767http://dx.doi.org/10.4049/jimmunol.167.10.5767
Geijtenbeek T. B. H.; Torensma R.; van Vliet S. J.; van Duijnhoven G. C. F.; Adema G. J.; van Kooyk Y.; Figdor C. G. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell, 2000, 100(5), 575-585. doi:10.1016/s0092-8674(00)80693-5http://dx.doi.org/10.1016/s0092-8674(00)80693-5
Conniot J.; Scomparin A.; Peres C.; Yeini E.; Pozzi S.; Matos A. I.; Kleiner R.; Moura L. I. F.; Zupančič E.; Viana A. S.; Doron H.; Gois P. M. P.; Erez N.; Jung S.; Satchi-Fainaro R.; Florindo H. F. Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat. Nanotechnol., 2019, 14(9), 891-901. doi:10.1038/s41565-019-0512-0http://dx.doi.org/10.1038/s41565-019-0512-0
Hu J.; Wei P.; Seeberger P. H.; Yin J. Mannose-functionalized nanoscaffolds for targeted delivery in biomedical applications. Chem. Asian J., 2018, 13(22), 3448-3459. doi:10.1002/asia.201801088http://dx.doi.org/10.1002/asia.201801088
Gunay G.; Sardan Ekiz M.; Ferhati X.; Richichi B.; Nativi C.; Tekinay A. B.; Guler M. O. Antigenic GM3 lactone mimetic molecule integrated mannosylated glycopeptide nanofibers for the activation and maturation of dendritic cells. ACS Appl. Mater. Interfaces, 2017, 9(19), 16035-16042. doi:10.1021/acsami.7b04094http://dx.doi.org/10.1021/acsami.7b04094
Qi W. J.; Zhang Y. F.; Wang J.; Tao G. Q.; Wu L. B.; Kochovski Z.; Gao H. J.; Chen G. S.; Jiang M. Deprotection-induced morphology transition and immunoactivation of glycovesicles: a strategy of smart delivery polymersomes. J. Am. Chem. Soc., 2018, 140(28), 8851-8857. doi:10.1021/jacs.8b04731http://dx.doi.org/10.1021/jacs.8b04731
Slütter B.; Bal S. M.; Ding Z.; Jiskoot W.; Bouwstra J. A. Adjuvant effect of cationic liposomes and CpG depends on administration route. J. Control. Release, 2011, 154(2), 123-130. doi:10.1016/j.jconrel.2011.02.007http://dx.doi.org/10.1016/j.jconrel.2011.02.007
Kim N. W.; Kim S. Y.; Lee J. E.; Yin Y.; Lee J. H.; Lim S. Y.; Kim E. S.; Duong H. T. T.; Kim H. K.; Kim S.; Kim J. E.; Lee D. S.; Kim J.; Lee M. S., Lim Y. T.; Jeong J. H. Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano, 2018, 12(10), 9702-9713. doi:10.1021/acsnano.8b04146http://dx.doi.org/10.1021/acsnano.8b04146
Bocanegra Gondan A. I.; Ruiz-de-Angulo A.; Zabaleta A.; Gómez Blanco N.; Cobaleda-Siles B. M.; García-Granda M. J.; Padro D.; Llop J.; Arnaiz B.; Gato M.; Escors D.; Mareque-Rivas J. C. Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles. Biomaterials, 2018, 170, 95-115. doi:10.1016/j.biomaterials.2018.04.003http://dx.doi.org/10.1016/j.biomaterials.2018.04.003
Iqbal S.; Blenner M.; Alexander-Bryant A.; Larsen J. Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: from design to therapeutic applications. Biomacromolecules, 2020, 21(4), 1327-1350. doi:10.1021/acs.biomac.9b01754http://dx.doi.org/10.1021/acs.biomac.9b01754
Cheng L.; Yang L.; Meng F. H.; Zhong Z. Y. Protein nanotherapeutics as an emerging modality for cancer therapy. Adv. Healthc. Mater., 2018, 7(20), 1800685. doi:10.1002/adhm.201800685http://dx.doi.org/10.1002/adhm.201800685
肖春生, 丁建勋, 贺超良, 陈学思. 糖聚肽高分子的合成、自组装及生物医学应用. 高分子学报, 2018, (1), 45-55. doi:10.11777/j.issn1000-3304.2018.17282http://dx.doi.org/10.11777/j.issn1000-3304.2018.17282
Gao M. H.; Peng Y.; Jiang L. M.; Qiu L. Y. Effective intracellular delivery and Th1 immune response induced by ovalbumin loaded in pH-responsive polyphosphazene polymersomes. Nanomed. Nanotechnol. Biol. Med., 2018, 14(5), 1609-1618. doi:10.1016/j.nano.2018.04.001http://dx.doi.org/10.1016/j.nano.2018.04.001
Lim J. W.; Na W.; Kim H. O.; Yeom M.; Kang A.; Park G.; Park C.; Ki J.; Lee S.; Jung B.; Jeong H. H.; Park D.; Song D.; Haam S. Co-delivery of antigens and immunostimulants via a polymersome for improvement of antigen-specific immune response. J. Mater. Chem. B, 2020, 8(26), 5620-5626. doi:10.1039/d0tb00892chttp://dx.doi.org/10.1039/d0tb00892c
Zhu D. W.; Hu C. Y.; Fan F.; Qin Y.; Huang C. L.; Zhang Z. M.; Lu L.; Wang H.; Sun H. F.; Leng X. G.; Wang C.; Kong D. L.; Zhang L. H. Co-delivery of antigen and dual agonists by programmed mannose-targeted cationic lipid-hybrid polymersomes for enhanced vaccination. Biomaterials, 2019, 206, 25-40. doi:10.1016/j.biomaterials.2019.03.012http://dx.doi.org/10.1016/j.biomaterials.2019.03.012
Li H. N.; Sun J. Y.; Zhu H. Y.; Wu H. X.; Zhang H.; Gu Z. W.; Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(2), e1670. doi:10.1002/wnan.1670http://dx.doi.org/10.1002/wnan.1670
Gu L.; Duan Z. Y.; Chen X. T.; Li X. L.; Luo Q.; Bhamra A.; Pan D. Y.; Zhu H. Y.; Tian X. H.; Chen R. J.; Gu Z. W.; Zhang H.; Qian Z. Y.; Gong Q. Y.; Luo K. A transformable amphiphilic and block polymer-dendron conjugate for enhanced tumor penetration and retention with cellular homeostasis perturbation via membrane flow. Adv. Mater., 2022, 34(16), 2200048. doi:10.1002/adma.202200048http://dx.doi.org/10.1002/adma.202200048
Song Y. Y.; Dong C. M. Sugar-dependent targeting and immune adjuvant effects of hyperbranched glycosylated polypeptide nanoparticles for ovalbumin delivery. Chinese Chem. Lett., 2022, 33(8), 4084-4088. doi:10.1016/j.cclet.2022.01.051http://dx.doi.org/10.1016/j.cclet.2022.01.051
Chen Q. J.; Gao M. Z.; Li Z. Y.; Xiao Y.; Bai X.; Boakye-Yiadom K. O.; Xu X. Y.; Zhang X. Q. Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy. J. Control. Release, 2020, 323, 179-190. doi:10.1016/j.jconrel.2020.03.044http://dx.doi.org/10.1016/j.jconrel.2020.03.044
Wu L. B.; Zhang Y. F.; Li Z.; Yang G.; Kochovski Z.; Chen G. S.; Jiang M. "Sweet" architecture-dependent uptake of glycocalyx-mimicking nanoparticles based on biodegradable aliphatic polyesters by macrophages. J. Am. Chem. Soc., 2017, 139(41), 14684-14692. doi:10.1021/jacs.7b07768http://dx.doi.org/10.1021/jacs.7b07768
Song Y. Y.; Chen Y. Z.; Li P.; Dong C. M. Photoresponsive polypeptide-glycosylated dendron amphiphiles: UV-triggered polymersomes, OVA release, and in vitro enhanced uptake and immune response. Biomacromolecules, 2020, 21(12), 5345-5357. doi:10.1021/acs.biomac.0c01465http://dx.doi.org/10.1021/acs.biomac.0c01465
Avvakumova S.; Fezzardi P.; Pandolfi L.; Colombo M.; Sansone F.; Casnati A.; Prosperi D. Gold nanoparticles decorated by clustered multivalent cone-glycocalixarenes actively improve the targeting efficiency toward cancer cells. Chem. Commun., 2014, 50(75), 11029-11032. doi:10.1039/c4cc03159hhttp://dx.doi.org/10.1039/c4cc03159h
Beignet J.; Tiernan J.; Woo C. H.; Kariuki B. M.; Cox L. R. Stereoselective synthesis of allyl-C-mannosyl compounds: use of a temporary silicon connection in intramolecular allylation strategies with allylsilanes. J. Org. Chem., 2004, 69(19), 6341-6356. doi:10.1021/jo049061whttp://dx.doi.org/10.1021/jo049061w
Lindhorst T. K.; Kieburg C. Glycocoating of oligovalent amines: synthesis of thiourea-bridged cluster glycosides from glycosyl isothiocyanates. Angew. Chem. Int. Edit., 1996, 35(17), 1953-1956. doi:10.1002/anie.199619531http://dx.doi.org/10.1002/anie.199619531
Li P.; Dong C. M. Phototriggered ring-opening polymerization of a photocaged l-lysine N-carboxyanhydride to synthesize hyperbranched and linear polypeptides. ACS Macro Lett., 2017, 6(3), 292-297. doi:10.1021/acsmacrolett.7b00167http://dx.doi.org/10.1021/acsmacrolett.7b00167
Lutz M. B.; Kukutsch N.; Ogilvie A. L. J.; Rößner S.; Koch F.; Romani N.; Schuler G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods, 1999, 223(1), 77-92. doi:10.1016/s0022-1759(98)00204-xhttp://dx.doi.org/10.1016/s0022-1759(98)00204-x
Madaan A.; Verma R.; Singh A. T.; Jain S. K.; Jaggi M. A stepwise procedure for isolation of murine bone marrow and generation of dendritic cells. J. Biol. Methods, 2014, 1(1), 68-83. doi:10.14440/jbm.2014.12http://dx.doi.org/10.14440/jbm.2014.12
Chen Q.; Xu L. G.; Liang C.; Wang C.; Peng R.; Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun., 2016, 7, 13193. doi:10.1038/ncomms13193http://dx.doi.org/10.1038/ncomms13193
Kim H.; Uto T.; Akagi T.; Baba M.; Akashi M. Amphiphilic poly(amino acid) nanoparticles induce size-dependent dendritic cell maturation. Adv. Funct. Mater., 2010, 20(22), 3925-3931. doi:10.1002/adfm.201000021http://dx.doi.org/10.1002/adfm.201000021
Krannig K. S.; Schlaad H. pH-Responsive bioactive glycopolypeptides with enhanced helicity and solubility in aqueous solution. J. Am. Chem. Soc., 2012, 134(45), 18542-18545. doi:10.1021/ja308772dhttp://dx.doi.org/10.1021/ja308772d
Lavilla C.; Yilmaz G.; Uzunova V.; Napier R.; Becer C. R.; Heise A. Block-sequence-specific glycopolypeptides with selective lectin binding properties. Biomacromolecules, 2017, 18(6), 1928-1936. doi:10.1021/acs.biomac.7b00356http://dx.doi.org/10.1021/acs.biomac.7b00356
Bonduelle C.; Lecommandoux S. Synthetic glycopolypeptides as biomimetic analogues of natural glycoproteins. Biomacromolecules, 2013, 14(9), 2973-2983. doi:10.1021/bm4008088http://dx.doi.org/10.1021/bm4008088
Bonduelle C.; Oliveira H.; Gauche C.; Huang J.; Heise A.; Lecommandoux S. Multivalent effect of glycopolypeptide based nanoparticles for galectin binding. Chem. Commun., 2016, 52(75), 11251-11254. doi:10.1039/c6cc06437jhttp://dx.doi.org/10.1039/c6cc06437j
Branco M. A.; Pinheiro L.; Faustino C. Amino acid-based cationic gemini surfactant-protein interactions. Colloid. Surf. A Physicochem. Eng. Aspects, 2015, 480, 105-112. doi:10.1016/j.colsurfa.2014.12.022http://dx.doi.org/10.1016/j.colsurfa.2014.12.022
Ding Y.; Liu J.; Lu S.; Igweze J.; Xu W.; Kuang D.; Zealey C.; Liu D. H.; Gregor A.; Bozorgzad A.; Zhang L.; Yue E.; Mujib S.; Ostrowski M.; Chen P. Self-assembling peptide for co-delivery of HIV-1 CD8+ T cells epitope and Toll-like receptor 7/8 agonists R848 to induce maturation of monocyte derived dendritic cell and augment polyfunctional cytotoxic T lymphocyte (CTL) response. J. Control. Release, 2016, 236, 22-30. doi:10.1016/j.jconrel.2016.06.019http://dx.doi.org/10.1016/j.jconrel.2016.06.019
Liu T. I.; Tsai Y. C.; Wang T. M.; Chang S. H.; Yang Y. C.; Chen H. H.; Chiu H. C. Development of a nano-immunomodulator encapsulating R837 and caffeine for combined radio-/immunotherapy against orthotopic breast cancer. Prog. Nat. Sci-Mater., 2020, 30(05): 697-706. doi:10.1016/j.pnsc.2020.09.014http://dx.doi.org/10.1016/j.pnsc.2020.09.014
Wang L.; He Y.; He T. T.; Liu G. H.; Lin C.; Li K.; Lu L.; Cai K. Y. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials, 2020, 255, 120208. doi:10.1016/j.biomaterials.2020.120208http://dx.doi.org/10.1016/j.biomaterials.2020.120208
Layek B.; Rahman Nirzhor S. S.; Rathi S.; Kandimalla K. K.; Wiedmann T. S.; Prabha S. Design, development, and characterization of imiquimod-loaded chitosan films for topical delivery. AAPS Pharmscitech, 2019, 20(2), 1-12. doi:10.1208/s12249-018-1288-5http://dx.doi.org/10.1208/s12249-018-1288-5
Chen J.; Fang H. P.; Hu Y. Y.; Wu J. Y.; Zhang S. J.; Feng Y. J.; Lin L.; Tian H. Y.; Chen X. S. Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioact. Mater., 2022, 7, 167-180. doi:10.1016/j.bioactmat.2021.05.036http://dx.doi.org/10.1016/j.bioactmat.2021.05.036
Ribeiro-Viana R.; García-Vallejo J. J.; Collado D.; Pérez-Inestrosa E.; Bloem K.; van Kooyk Y.; Rojo J. BODIPY-labeled DC-SIGN-targeting glycodendrons efficiently internalize and route to lysosomes in human dendritic cells. Biomacromolecules, 2012, 13(10), 3209-3219. doi:10.1021/bm300998chttp://dx.doi.org/10.1021/bm300998c
Xiang J.; Xu L. G.; Gong H.; Zhu W. W.; Wang C.; Xu J.; Feng L. Z.; Cheng L.; Peng R.; Liu Z. Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano, 2015, 9(6), 6401-6411. doi:10.1021/acsnano.5b02014http://dx.doi.org/10.1021/acsnano.5b02014
Zhou Q. Q.; Zhang Y. L.; Du J.; Li Y.; Zhou Y.; Fu Q. X.; Zhang J. G.; Wang X. H.; Zhan L. S. Different-sized gold nanoparticle activator/antigen increases dendritic cells accumulation in liver-draining lymph nodes and CD8+ T cell responses. ACS Nano, 2016, 10(2), 2678-2692. doi:10.1021/acsnano.5b07716http://dx.doi.org/10.1021/acsnano.5b07716
Mellman I.; Steinman R. Dendritic cells specialized and regulated antigen processing machines. Cell, 2001, 106, 255-258. doi:10.1016/s0092-8674(01)00449-4http://dx.doi.org/10.1016/s0092-8674(01)00449-4
Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer, 2004, 4(1), 11-22. doi:10.1038/nrc1252http://dx.doi.org/10.1038/nrc1252
0
Views
36
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution