浏览全部资源
扫码关注微信
1.北京科技大学化学与生物工程学院 北京 100083
2.北京分子科学国家研究中心 高分子化学与物理教育部重点实验室 北京大学软物质科学与工程中心 化学与分子工程学院 北京 100871
Zhi-hao Shen, E-mail: zshen@pku.edu.cn;
Xiao-tao Yuan, E-mail: yuanxt@ustb.edu.cn
Published:20 November 2023,
Published Online:05 July 2023,
Received:25 March 2023,
Accepted:25 May 2023
扫 描 看 全 文
陈凯锋,刘赟,沈志豪等.空间位阻对氢键构筑的嵌段共聚物微相分离结构的影响[J].高分子学报,2023,54(11):1681-1696.
Chen Kai-feng,Liu Yun,Shen Zhi-hao,et al.Effect of Steric Hindrance on Microphase-separated Structures of Block Copolymers Constructed by Hydrogen Bonding[J].Acta Polymerica Sinica,2023,54(11):1681-1696.
陈凯锋,刘赟,沈志豪等.空间位阻对氢键构筑的嵌段共聚物微相分离结构的影响[J].高分子学报,2023,54(11):1681-1696. DOI: 10.11777/j.issn1000-3304.2023.23071.
Chen Kai-feng,Liu Yun,Shen Zhi-hao,et al.Effect of Steric Hindrance on Microphase-separated Structures of Block Copolymers Constructed by Hydrogen Bonding[J].Acta Polymerica Sinica,2023,54(11):1681-1696. DOI: 10.11777/j.issn1000-3304.2023.23071.
基于氢键构筑的嵌段共聚物已有广泛的研究,但关于空间位阻对这类体系微相分离结构影响的相关报道仍较少. 通过选用分子量和体积分数相近的聚苯乙烯-
b
-聚(4-乙烯基吡啶) (PS-
b
-P4VP)和聚苯乙烯-
b
-聚(2-乙烯基吡啶) (PS-
b
-P2VP) 2种含吡啶基团的嵌段共聚物,与合成的羧酸小分子Ben通过氢键构筑超分子型嵌段共聚物PS-
b
-P4VP(Ben)
x
和PS-
b
-P2VP(Ben)
x
,其中
x
为氢键给体Ben与氢键受体P4VP或P2VP的摩尔比. 通过对复合比例
x
的调控,有效地控制了氢键复合物的微相分离结构. 首先利用傅里叶红外光谱(FTIR)对复合物进行表征,确认了氢键的形成. 随后利用示差扫描量热(DSC)和广角X射线散射(WAXS)技术研究了氢键复合物的相行为,发现超分子链段的玻璃化温度基本上随复合比例的增大而降低,而超分子链段P4VP(Ben)
x
和P2VP(Ben)
x
均没有液晶性. 最后利用小角X射线散射(SAXS)技术对2种氢键复合物的微相分离结构进行探究,并通过绘制相图总结氢键所在位置不用导致的位阻差异对氢键复合物自组装结构的影响. 这一工作为有效调控超分子型嵌段共聚物的微相分离结构提供了参考.
There are plenty of studies on block copolymers constructed by hydrogen bonding in the literature. However
the number of reports on the effect of steric hindrance on the self-assembled strictures of these systems is very limited. In this work
supramolecular block copolymers PS-
b
-P4VP(Ben)
x
and PS-
b
-P2VP(Ben)
x
were constructed by hydrogen bonding between the pyridine-containing block copolymers PS-
b
-P4VP and PS-
b
-P2VP
having similar molecular weights and volume fractions and the synthesized small-molecule carboxylic acid Ben
where
x
is the molar ratio of the hydrogen-bonding donor Ben to the acceptor P4VP or P2VP. The microphase-separated structures of the hydrogen-bonding complexes were effectively controlled by adjusting the value of
x
. Fourier transform infrared spectroscopy (FTIR) was utilized to characterize the complexes obtained
confirming the formation of hydrogen bonding. Then differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) were used to investigate their phase behaviors. The glass transition temperatures of the supramolecular blocks were found to decrease with the increase of
x
. Neither P4VP(Ben)
x
nor P2VP(Ben)
x
exhibited liquid crystallinity. Finally
small-angle X-ray scattering (SAXS) was used to explore the microphase-separated structures of the two types of hydrogen-bonding complexes. And the effect of the steric hindrance during the formation of hydrogen bonding on the nanostructures of the hydrogen-bonding complexes was summarized by drawing the phase diagrams. This work provides the basis for effectively controlling the microphase-separated structures of supramolecular block copolymers.
氢键甲壳型聚合物嵌段共聚物空间位阻微相分离
Hydrogen bondingMesogen-jacketed polymerBlock copolymerSteric hindranceMicrophase separation
Stel B.; Gunkel I.; Gu X. D.; Russell T. P.; de Yoreo J. J.; Lingenfelder M. Contrasting chemistry of block copolymer films controls the dynamics of protein self-assembly at the nanoscale. ACS Nano, 2019, 13(4), 4018-4027. doi:10.1021/acsnano.8b08013http://dx.doi.org/10.1021/acsnano.8b08013
Zhou H. J.; Yang G. W.; Zhang Y. Y.; Xu Z. K.; Wu G. P. Bioinspired block copolymer for mineralized nanoporous membrane. ACS Nano, 2018, 12(11), 11471-11480. doi:10.1021/acsnano.8b06521http://dx.doi.org/10.1021/acsnano.8b06521
Liu D.; Tang Z. H.; Luo L. F.; Yang W. L.; Liu Y.; Shen Z. H.; Fan X. H. Self-healing solid polymer electrolyte with high ion conductivity and super stretchability for all-solid zinc-ion batteries. ACS Appl. Mater. Interfaces, 2021, 13(30), 36320-36329. doi:10.1021/acsami.1c09200http://dx.doi.org/10.1021/acsami.1c09200
Aizawa M.; Buriak J. M. Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces. Chem. Mater., 2007, 19(21), 5090-5101. doi:10.1021/cm071382bhttp://dx.doi.org/10.1021/cm071382b
Halevi A.; Halivni S.; Oded M.; Müller A. H. E.; Banin U.; Shenhar R. Co-assembly of A-B diblock copolymers with B'-type nanoparticles in thin films: effect of copolymer composition and nanoparticle shape. Macromolecules, 2014, 47(9), 3022-3032. doi:10.1021/ma402416ghttp://dx.doi.org/10.1021/ma402416g
Kao J.; Bai P.; Lucas J. M.; Alivisatos A. P.; Xu T. Size-dependent assemblies of nanoparticle mixtures in thin films. J. Am. Chem. Soc., 2013, 135(5), 1680-1683. doi:10.1021/ja3107912http://dx.doi.org/10.1021/ja3107912
Liu D.; Wu F.; Shen Z. H.; Fan X. H. Safety-enhanced polymer electrolytes with high ambient-temperature lithium-ion conductivity based on ABA triblock copolymers. Chinese J. Polym. Sci., 2022, 40(1), 21-28. doi:10.1007/s10118-021-2648-2http://dx.doi.org/10.1007/s10118-021-2648-2
Wang Z. Q.; Wang Y. M.; Wang X. Y.; Wang B. H.; Chen J. B.; Shen C. Y.; Zhang B. Self-nucleation of patterned polymer thin films defined by soft lithography. Chinese J. Polym. Sci., 2022, 40(6), 651-657. doi:10.1007/s10118-022-2709-1http://dx.doi.org/10.1007/s10118-022-2709-1
Sivaniah E.; Matsubara S.; Zhao Y.; Hashimoto T.; Fukunaga K.; Kramer E. J.; Mates T. E. Symmetric diblock copolymer thin films on rough substrates: Microdomain periodicity in pure and blended films. Macromolecules, 2008, 41(7), 2584-2592. doi:10.1021/ma702465thttp://dx.doi.org/10.1021/ma702465t
Bates F. S.; Fredrickson G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem., 1990, 41, 525-557. doi:10.1146/annurev.pc.41.100190.002521http://dx.doi.org/10.1146/annurev.pc.41.100190.002521
Leibler L. Theory of microphase separation in block copolymers. Macromolecules, 1980, 13(6), 1602-1617. doi:10.1021/ma60078a047http://dx.doi.org/10.1021/ma60078a047
Matsen M. W.; Schick M. Microphases of a diblock copolymer with conformational asymmetry. Macromolecules, 1994, 27(14), 4014-4015. doi:10.1021/ma00092a049http://dx.doi.org/10.1021/ma00092a049
Cochran E. W.; Garcia-Cervera C. J.; Fredrickson G. H. Stability of the gyroid phase in diblock copolymers at strong segregation. Macromolecules, 2006, 39(12), 4264. doi:10.1021/ma060970shttp://dx.doi.org/10.1021/ma060970s
Matsen M. W.; Schick M. Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett., 1994, 72(16), 2660-2663. doi:10.1103/physrevlett.72.2660http://dx.doi.org/10.1103/physrevlett.72.2660
Matsen M. W.; Bates F. S. Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 1996, 29(4), 1091-1098. doi:10.1021/ma951138ihttp://dx.doi.org/10.1021/ma951138i
Ruokolainen J.; Mäkinen R.; Torkkeli M.; Mäkelä T.; Serimaa R.; ten Brinke G.; Ikkala O. Switching supramolecular polymeric materials with multiple length scales. Science, 1998, 280(5363), 557-560. doi:10.1126/science.280.5363.557http://dx.doi.org/10.1126/science.280.5363.557
Ruokolainen J.; Saariaho M.; Ikkala O.; ten Brinke G.; Thomas E. L.; Torkkeli M.; Serimaa R. Supramolecular routes to hierarchical structures: comb-coil diblock copolymers organized with two length scales. Macromolecules, 1999, 32(4), 1152-1158. doi:10.1021/ma980189nhttp://dx.doi.org/10.1021/ma980189n
Ruokolainen J.; Tanner J.; Ikkala O.; ten Brinke G.; Thomas E. L. Direct imaging of self-organized comb copolymer-like systems obtained by hydrogen bonding: poly(4-vinylpyridine)-4-nonadecylphenol. Macromolecules, 1998, 31(11), 3532-3536. doi:10.1021/ma971747lhttp://dx.doi.org/10.1021/ma971747l
Fyfe M. C. T.; Stoddart J. F. Synthetic supramolecular chemistry. Acc. Chem. Res., 1997, 30(10), 393-401. doi:10.1021/ar950199yhttp://dx.doi.org/10.1021/ar950199y
Ruokolainen J.; ten Brinke G.; Ikkala O.; Torkkeli M.; Serimaa R. Mesomorphic structures in flexible polymer-surfactant systems due to hydrogen bonding: poly(4-vinylpyridine)-pentadecylphenol. Macromolecules, 1996, 29(10), 3409-3415. doi:10.1021/ma9516504http://dx.doi.org/10.1021/ma9516504
Kato T.; Frechet J. M. J. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side chain. Macromolecules, 1989, 22(9), 3818-3819. doi:10.1021/ma00199a060http://dx.doi.org/10.1021/ma00199a060
Bai P.; Kim M. I.; Xu T. Thermally controlled morphologies in a block copolymer supramolecule via nonreversible order-order transitions. Macromolecules, 2013, 46(14), 5531-5537. doi:10.1021/ma401033whttp://dx.doi.org/10.1021/ma401033w
Zhao Y.; Thorkelsson K.; Mastroianni A. J.; Schilling T.; Luther J. M.; Rancatore B. J.; Matsunaga K.; Jinnai H.; Wu Y.; Poulsen D.; Fréchet J. M. J.; Paul Alivisatos A.; Xu T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater., 2009, 8(12), 979-985. doi:10.1038/nmat2565http://dx.doi.org/10.1038/nmat2565
Rancatore B. J.; Mauldin C. E.; Tung S. H.; Wang C.; Hexemer A.; Strzalka J.; Fréchet J. M. J.; Xu T. Nanostructured organic semiconductors via directed supramolecular assembly. ACS Nano, 2010, 4(5), 2721-2729. doi:10.1021/nn100521fhttp://dx.doi.org/10.1021/nn100521f
Rancatore B. J.; Mauldin C. E.; Fréchet J. M. J.; Xu T. Small molecule-guided thermoresponsive supramolecular assemblies. Macromolecules, 2012, 45(20), 8292-8299. doi:10.1021/ma301727qhttp://dx.doi.org/10.1021/ma301727q
Painter P. C.; Graf J. F.; Coleman M. M. Effect of hydrogen bonding on the enthalpy of mixing and the composition dependence of the glass transition temperature in polymer blends. Macromolecules, 1991, 24(20), 5630-5638. doi:10.1021/ma00020a023http://dx.doi.org/10.1021/ma00020a023
Vera F.; Almuzara C.; Orera I.; Barberá J.; Oriol L.; Serrano J. L.; Sierra T. Side-chain supramolecular polymers with induced supramolecular chirality through H-bonding interactions. J. Polym. Sci. A Polym. Chem., 2008, 46(16), 5528-5541. doi:10.1002/pola.22873http://dx.doi.org/10.1002/pola.22873
Koh H. D.; Park S.; Russell T. P. Fabrication of Pt/Au concentric spheres from triblock copolymer. ACS Nano, 2010, 4(2), 1124-1130. doi:10.1021/nn9016026http://dx.doi.org/10.1021/nn9016026
Soininen A. J.; Tanionou I.; ten Brummelhuis N.; Schlaad H.; Hadjichristidis N.; Ikkala O.; Raula J.; Mezzenga R.; Ruokolainen J. Hierarchical structures in lamellar hydrogen bonded LC side chain diblock copolymers. Macromolecules, 2012, 45(17), 7091-7097. doi:10.1021/ma300820qhttp://dx.doi.org/10.1021/ma300820q
Valkama S.; Ruotsalainen T.; Nykänen A.; Laiho A.; Kosonen H.; ten Brinke G.; Ikkala O.; Ruokolainen J. Self-assembled structures in diblock copolymers with hydrogen-bonded amphiphilic plasticizing compounds. Macromolecules, 2006, 39(26), 9327-9336. doi:10.1021/ma060838shttp://dx.doi.org/10.1021/ma060838s
Tenneti K. K.; Chen X. F.; Li C. Y.; Wan X. H.; Fan X. H.; Zhou Q. F.; Rong L. X.; Hsiao B. S. Hierarchical nanostructures of bent-core molecules blended with poly(styrene-b-4-vinylpyridine) block copolymer. Macromolecules, 2007, 40(14), 5095-5102. doi:10.1021/ma070721jhttp://dx.doi.org/10.1021/ma070721j
张希, 王力彦, 徐江飞, 陈道勇, 史林启, 周永丰, 沈志豪. 聚合物超分子体系: 设计、组装与功能. 高分子学报, 2019, 50(10): 973-987. doi:10.11777/j.issn1000-3304.2019.19no6http://dx.doi.org/10.11777/j.issn1000-3304.2019.19no6
Fan L. F.; Hou C. L.; Wang X.; Yan L. T.; Wu D. C. Tunable multiple morphological transformation of supramolecular hyperbranched polymers based on an A2B6-type POSS monomer.Chinese J. Polym. Sci., 2021, 39(12), 1562-1571. doi:10.1007/s10118-021-2598-8http://dx.doi.org/10.1007/s10118-021-2598-8
Daga V. K.; Watkins J. J. Hydrogen-bond-mediated phase behavior of complexes of small molecule additives with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer surfactants. Macromolecules, 2010, 43(23), 9990-9997. doi:10.1021/ma101694nhttp://dx.doi.org/10.1021/ma101694n
Vapaavuori J.; Grosrenaud J.; Siiskonen A.; Priimagi A.; Pellerin C.; Bazuin C. G. Photocontrol of supramolecular azo-containing block copolymer thin films during dip-coating: toward nanoscale patterned coatings. ACS Appl. Nano Mater., 2019, 2(6), 3526-3537. doi:10.1021/acsanm.9b00496http://dx.doi.org/10.1021/acsanm.9b00496
Olubummo A.; Schulz M.; Schöps R.; Kressler J.; Binder W. H. Phase changes in mixed lipid/polymer membranes by multivalent nanoparticle recognition. Langmuir, 2014, 30(1), 259-267. doi:10.1021/la403763vhttp://dx.doi.org/10.1021/la403763v
Hofman A. H.; ten Brinke G.; Loos K. Hierarchical structure formation in supramolecular comb-shaped block copolymers. Polymer, 2016, 107, 343-356. doi:10.1016/j.polymer.2016.08.021http://dx.doi.org/10.1016/j.polymer.2016.08.021
Zhou Q. F.; Li H. M.; Feng X. D. Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens. Macromolecules, 1987, 20(1), 233-234. doi:10.1021/ma00167a042http://dx.doi.org/10.1021/ma00167a042
Zhou Q. F.; Zhu X. L.; Wen Z. Q. Liquid-crystalline side-chain polymers without flexible spacer. Macromolecules, 1989, 22(1), 491-493. doi:10.1021/ma00191a094http://dx.doi.org/10.1021/ma00191a094
Xu Y. D.; Qu W.; Yang Q.; Zheng J. K.; Shen Z. H.; Fan X. H.; Zhou Q. F. Synthesis and characterization of mesogen-jacketed liquid crystalline polymers through hydrogen-bonding. Macromolecules, 2012, 45(6), 2682-2689. doi:10.1021/ma202742khttp://dx.doi.org/10.1021/ma202742k
Yang S. Q.; Qu W.; Pan H. B.; Zhang Y. D.; Zheng S. J.; Fan X. H.; Shen Z. H. Effects of main chain and acceptor content on phase behaviors of hydrogen-bonded main-chain/side-chain combined liquid crystalline polymers. Polymer, 2016, 84, 355-364. doi:10.1016/j.polymer.2016.01.018http://dx.doi.org/10.1016/j.polymer.2016.01.018
Fedorova D. D.; Nazarova D. S.; Avetyan D. L.; Shatskiy A.; Belyanin M. L.; Kärkäs M. D.; Stepanova E. V. Divergent synthesis of natural benzyl salicylate and benzyl gentisate glucosides. J. Nat. Prod., 2020, 83(10), 3173-3180. doi:10.1021/acs.jnatprod.0c00838http://dx.doi.org/10.1021/acs.jnatprod.0c00838
Liu Y.; Tao L.; Yang S. C.; Yu Z. Q.; Shen Z. H.; Fan X. H.; Zhou Q. F. Synthesis and self-assembly of fluorinated supramolecular mesogen-jacketed liquid crystalline polymer and its high-χ block copolymer constructed by hydrogen bonding. Polymer, 2022, 260, 125373. doi:10.1016/j.polymer.2022.125373http://dx.doi.org/10.1016/j.polymer.2022.125373
0
Views
33
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution