浏览全部资源
扫码关注微信
天津工业大学材料科学与工程学院 省部共建分离膜与膜过程国家重点实验室 天津 300387
Jian-qiang Meng, E-mail: jianqiang.meng@tiangong.edu.cn
Published:20 October 2023,
Published Online:05 July 2023,
Received:26 March 2023,
Accepted:11 May 2023
扫 描 看 全 文
陈思,张琛琛,孟建强.N-取代对聚苯并咪唑水/盐传输行为的影响研究[J].高分子学报,2023,54(10):1588-1598.
Chen Si,Zhang Chen-chen,Meng Jian-qiang.Effects of N-substitution on the Water/Salt Transport Properties of Polybenzimidazole[J].ACTA POLYMERICA SINICA,2023,54(10):1588-1598.
陈思,张琛琛,孟建强.N-取代对聚苯并咪唑水/盐传输行为的影响研究[J].高分子学报,2023,54(10):1588-1598. DOI: 10.11777/j.issn1000-3304.2023.23073.
Chen Si,Zhang Chen-chen,Meng Jian-qiang.Effects of N-substitution on the Water/Salt Transport Properties of Polybenzimidazole[J].ACTA POLYMERICA SINICA,2023,54(10):1588-1598. DOI: 10.11777/j.issn1000-3304.2023.23073.
为了解
N
-取代对聚苯并咪唑(PBI)水/盐传输行为的影响,考虑PBI中咪唑环上的N―H键较为活泼,选择3种具有可对比性的
N
-取代基团(对联苯甲酰基、对联苯磺酰基、丁烷基)与PBI中N―H基团反应,用核磁、傅里叶红外光谱、X-射线衍射、示差扫描量热和表面电势考察了
N
-取代后PBI的物化性质,并以溶解-扩散理论为基础,研究不同
N
-取代基团对PBI聚合物膜的水/盐传输行为的影响. 研究结果表明,
N
-取代改性使聚合物链之间的相互作用降低,聚合物分子链间距增大,同时膜表面电负性增强. 同时,与PBI相比,
N
-取代改性使得PBI分子链间产生更大的自由体积空穴,增加了水的传输通道,并提高亲水基团的可及性而降低自由水的含量,从而能够有效提高PBI膜的水/盐溶解、扩散和渗透选择性. 其中,对联苯磺酰基其扩散水渗透系数与PBI相比提高了30倍,表现出最优异的水/盐传输性质. 为了解聚合物改性对PBI水/盐传输性质的影响,也为未来面向脱盐高性能聚合物的分子结构设计提供了参考.
In order to understand the effects of
N
-substitution on the water/salt transport behavior of polybenzimidazole (PBI)
in this work
considering that the N―H bond on the imidazole ring in PBI is reactive
three comparable
N
-substituted groups (
p
-benzoyl
p
-benzenesulfonyl
and butyl) were selected to react with the N―H group
and the physical and chemical properties of PBI after
N
-substitution were investigated by nuclear magnetic resonance (NMR)
Fourier transform infrared spectroscopy (FTIR)
X-ray diffraction (XRD)
differential scanning calorimetry (DSC) and surface zeta potential
and solution-diffusion theory to investigate the effects of different
N
-substituted groups on the water/salt transport behavior of PBI. The results show that the
N
-substitution modification leads to the reduction of interactions between polymer chains and the increase of polymer molecular chain spacing
while the electronegativity of the membrane surface is enhanced. At the same time
the
N
-substitution modification results in larger free volume cavities between PBI molecular chains
which increase the water transport channels
and increases the accessibility of hydrophilic groups and decreases the content of free water; thus
it can improve the water/salt solubility
diffusivity and permeability selectivity of PBI effectively. Among them
p
-biphenylsulfonyl whose diffusive water permeability coefficient is 30 times higher compared with PBI
exhibits the most excellent water/salt transport properties. It provides an understanding of the effect of polymer modification on the water/salt transport properties of PBI
and also provides a reference for future molecular structure design of high performance polymers oriented to desalination.
聚苯并咪唑N-取代溶解-扩散理论水/盐传输脱盐
PolybenzimidazoleN-substitutionSolution-diffusion theoryWater/salt transportDesalination
Nthunya L. N.; Bopape M. F.; Mahlangu O. T.; Mamba B. B.; van der Bruggen B.; Quist-Jensen C. A.; Richards H. Fouling, performance and cost analysis of membrane-based water desalination technologies: a critical review. J. Environ. Manag., 2022, 301, 113922. doi:10.1016/j.jenvman.2021.113922http://dx.doi.org/10.1016/j.jenvman.2021.113922
Wen Y. H.; Yuan J. M.; Ma X. M.; Wang S. R.; Liu Y. C. Polymeric nanocomposite membranes for water treatment: a review. Environ. Chem. Lett., 2019, 17(4), 1539-1551. doi:10.1007/s10311-019-00895-9http://dx.doi.org/10.1007/s10311-019-00895-9
Rout P. R.; Zhang T. C.; Bhunia P.; Surampalli R. Y. Treatment technologies for emerging contaminants in wastewater treatment plants: a review. Sci. Total Environ., 2021, 753, 141990. doi:10.1016/j.scitotenv.2020.141990http://dx.doi.org/10.1016/j.scitotenv.2020.141990
Mahto A.; Aruchamy K.; Meena R.; Kamali M.; Nataraj S. K.; Aminabhavi T. M. Forward osmosis for industrial effluents treatment—sustainability considerations. Sep. Purif. Technol., 2021, 254, 117568. doi:10.1016/j.seppur.2020.117568http://dx.doi.org/10.1016/j.seppur.2020.117568
Gohil J. M.; Ray P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: Potential for water treatment and desalination. Sep. Purif. Technol., 2017, 181, 159-182. doi:10.1016/j.seppur.2017.03.020http://dx.doi.org/10.1016/j.seppur.2017.03.020
Benarde M. A.; Israel B. M.; Olivieri V. P.; Granstrom M. L. Efficiency of chlorine dioxide as a bactericide. Appl. Microbiol., 1965, 13(5), 776-780. doi:10.1128/am.13.5.776-780.1965http://dx.doi.org/10.1128/am.13.5.776-780.1965
Wang X.; Jayaweera P.; Alrasheed R. A.; Aljlil S. A.; Alyousef Y. M.; Alsubaei M.; AlRomaih H.; Jayaweera I. Preparation of polybenzimidazole hollow-fiber membranes for reverse osmosis and nanofiltration by changing the spinning air gap. Membranes, 2018, 8(4), 113. doi:10.3390/membranes8040113http://dx.doi.org/10.3390/membranes8040113
Bower E. A.; Rafalko J. J. Process for modifying polybenzimidazole polymers with ethylene carbonates. US patent, 4599388. 1986-07-08.
Hu L. N.; You M.; Meng J. Q. Chlorination as a simple but effective method to improve the water/salt selectivity of polybenzimidazole for desalination membrane applications. J. Membr. Sci., 2021, 638, 119745. doi:10.1016/j.memsci.2021.119745http://dx.doi.org/10.1016/j.memsci.2021.119745
Aiba M.; Tokuyama T.; Matsumoto H.; Tomioka H.; Higashihara T.; Ueda M. Semipermeable membranes based on polybenzimidazole: simultaneous improvement in water flux and salt rejection by facile cross-linking. Desalination, 2016, 395, 1-7. doi:10.1016/j.desal.2016.05.021http://dx.doi.org/10.1016/j.desal.2016.05.021
Xiao Y. M.; Wang S. H.; Tian G. Y.; Xiang J.; Zhang L.; Cheng P. G.; Zhang J. P.; Tang N. Preparation and molecular simulation of grafted polybenzimidazoles containing benzimidazole type side pendant as high-temperature proton exchange membranes. J. Membr. Sci., 2021, 620, 118858. doi:10.1016/j.memsci.2020.118858http://dx.doi.org/10.1016/j.memsci.2020.118858
Zhu L. X.; Swihart M. T.; Lin H. Q. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation. J. Mater. Chem. A, 2017, 5(37), 19914-19923. doi:10.1039/c7ta03874ghttp://dx.doi.org/10.1039/c7ta03874g
Ong R. C.; Chung T. S.; Helmer B. J.; de Wit J. S. Characteristics of water and salt transport, free volume and their relationship with the functional groups of novel cellulose esters. Polymer, 2013, 54(17), 4560-4569. doi:10.1016/j.polymer.2013.06.043http://dx.doi.org/10.1016/j.polymer.2013.06.043
Han J.; Cho Y. H.; Kong H.; Han S.; Park H. B. Preparation and characterization of novel acetylated cellulose ether (ACE) membranes for desalination applications. J. Membr. Sci., 2013, 428, 533-545. doi:10.1016/j.memsci.2012.10.043http://dx.doi.org/10.1016/j.memsci.2012.10.043
Lonsdale H. K.; Merten U.; Riley R. L. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci., 1965, 9(4), 1341-1362. doi:10.1002/app.1965.070090413http://dx.doi.org/10.1002/app.1965.070090413
Luo H. X.; Aboki J.; Ji Y. Y.; Guo R. L.; Geise G. M. Water and salt transport properties of triptycene-containing sulfonated polysulfone materials for desalination membrane applications. ACS Appl. Mater. Interfaces, 2018, 10(4), 4102-4112. doi:10.1021/acsami.7b17225http://dx.doi.org/10.1021/acsami.7b17225
Geise G. M.; Paul D. R.; Freeman B. D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci., 2014, 39(1), 1-42. doi:10.1016/j.progpolymsci.2013.07.001http://dx.doi.org/10.1016/j.progpolymsci.2013.07.001
Ettori A.; Gaudichet-Maurin E.; Aimar P.; Causserand C. Mass transfer properties of chlorinated aromatic polyamide reverse osmosis membranes. Sep. Purif. Technol., 2012, 101, 60-67. doi:10.1016/j.seppur.2012.09.008http://dx.doi.org/10.1016/j.seppur.2012.09.008
Paul D. R. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci., 2004, 241(2), 371-386. doi:10.1016/j.memsci.2004.05.026http://dx.doi.org/10.1016/j.memsci.2004.05.026
尤蒙, 孙玉绣, 许飞, 高鑫, 孟建强. 醋酸纤维素/MOF混合基质膜的水/盐传输. 膜科学与技术, 2021, 41(3),77-88.
Luo H. X.; Chang K.; Bahati K.; Geise G. M. Functional group configuration influences salt transport in desalination membrane materials. J. Membr. Sci., 2019, 590, 117295. doi:10.1016/j.memsci.2019.117295http://dx.doi.org/10.1016/j.memsci.2019.117295
You M.; Yin J.; Sun R. B.; Cao X. Z.; Meng J. Q. Water/salt transport properties of organic/inorganic hybrid films based on cellulose triacetate. J. Membr. Sci., 2018, 563, 571-583. doi:10.1016/j.memsci.2018.06.035http://dx.doi.org/10.1016/j.memsci.2018.06.035
Xu Y. W.; Tang J.; Chang G. J.; Luo X.; Zhu F. H.; Zhang L. Synthesis and characterization of N-substituted polybenzimidazoles. Asian J. Chem., 2013, 25(7), 4013-4016. doi:10.14233/ajchem.2013.13881http://dx.doi.org/10.14233/ajchem.2013.13881
Staiti P.; Lufrano F.; Aricò A. S.; Passalacqua E.; Antonucci V. Sulfonated polybenzimidazole membranes—preparation and physico-chemical characterization. J. Membr. Sci., 2001, 188(1), 71-78. doi:10.1016/s0376-7388(01)00359-3http://dx.doi.org/10.1016/s0376-7388(01)00359-3
Wang T.; Gao F.; Li S.; Phillip W. A.; Guo R. L. Water and salt transport properties of pentiptycene-containing sulfonated polysulfones for desalination membrane applications. J. Membr. Sci., 2021, 640, 119806. doi:10.1016/j.memsci.2021.119806http://dx.doi.org/10.1016/j.memsci.2021.119806
Zhang C. C.; Chen S.; Hu L. N.; You M.; Meng J. Q. Elevating the water/salt selectivity of polybenzimidazole to the empirical upper bound of desalting polymers by marrying N-substitution with chlorination. Polymer, 2022, 261, 125419. doi:10.1016/j.polymer.2022.125419http://dx.doi.org/10.1016/j.polymer.2022.125419
Xie W.; Ju H.; Geise G. M.; Freeman B. D.; Mardel J. I.; Hill A. J.; McGrath J. E. Effect of free volume on water and salt transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Macromolecules, 2011, 44(11), 4428-4438. doi:10.1021/ma102745shttp://dx.doi.org/10.1021/ma102745s
Xie W.; Cook J.; Park H. B.; Freeman B. D.; Lee C. H.; McGrath J. E. Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Polymer, 2011, 52(9), 2032-2043. doi:10.1016/j.polymer.2011.02.006http://dx.doi.org/10.1016/j.polymer.2011.02.006
Geise G. M.; Park H. B.; Sagle A. C.; Freeman B. D.; McGrath J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci., 2011, 369(1-2), 130-138. doi:10.1016/j.memsci.2010.11.054http://dx.doi.org/10.1016/j.memsci.2010.11.054
0
Views
25
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution