The self-assembly behavior of the supramolecular complex system of polydimethylsiloxane-
b
-poly(2-vinylpyridine) (PDMS-
b
-P2VP
DV) and 4-hydroxyazobenzene (Azo) based on hydrogen bonding interaction was investigated. Supramolecular block copolymer was prepared by solution blending method. The interaction between Azo molecules and PDMS-
b
-P2VP and the effect of Azo molecules content on the self-assembly behavior of the system were investigated by Fourier transform infrared (FTIR) spectroscopy
differential scanning calorimetry (DSC)
small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The results demonstrate that Azo can effectively form hydrogen bond with pyridine group in PDMS-
b
-P2VP. The glass transition temperature of P2VP block decreased with the increase of the molar ratio (
x
) of Azo/2VP. With
x
value changed from 0 to 0.5
the supramolecular block copolymers presented lamellae (LAM)
hexagonally packed cylinder (HEX)
and body centered cubic (BCC) structures. However
when
x
is higher than 0.5
the self-aggregation of Azo occurred and the phase-separated nanostructure becomes disordered. Our future work will focus on the light-responsive structure regulation of these supramolecular block copolymers.
Valkama S.; Kosonen H.; Ruokolainen J.; Haatainen T.; Torkkeli M.; Serimaa R.; ten Brinke G.; Ikkala O. Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nat. Mater., 2004, 3(12), 872-876. doi:10.1038/nmat1254http://dx.doi.org/10.1038/nmat1254
Ikkala O.; ten Brinke G. Functional materials based on self-assembly of polymeric supramolecules. Science, 2002, 295(5564), 2407-2409. doi:10.1126/science.1067794http://dx.doi.org/10.1126/science.1067794
Stefik M.; Guldin S.; Vignolini S.; Wiesner U.; Steiner U. Block copolymer self-assembly for nanophotonics. Chem. Soc. Rev., 2015, 44(15), 5076-5091. doi:10.1039/c4cs00517ahttp://dx.doi.org/10.1039/c4cs00517a
Bates F. S.; Fredrickson G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem., 1990, 41, 525-557. doi:10.1146/annurev.pc.41.100190.002521http://dx.doi.org/10.1146/annurev.pc.41.100190.002521
Bates F. S. Network phases in block copolymer melts. MRS Bull., 2005, 30(7), 525-532. doi:10.1557/mrs2005.145http://dx.doi.org/10.1557/mrs2005.145
Kimishima K.; Koga T.; Hashimoto T. Order-order phase transition between spherical and cylindrical microdomain structures of block copolymer. I. Mechanism of the transition. Macromolecules, 2000, 33(3), 968-977. doi:10.1021/ma991470khttp://dx.doi.org/10.1021/ma991470k
Zha W. B.; Han C. D.; Lee D. H.; Han S. H.; Kim J. K.; Kang J. H.; Park C. Origin of the difference in order-disorder transition temperature between polystyrene-block-poly(2-vinylpyridine) and polystyrene-block-poly(4-vinylpyridine) copolymers. Macromolecules, 2007, 40(6), 2109-2119. doi:10.1021/ma062516uhttp://dx.doi.org/10.1021/ma062516u
Lin S. H.; Ho C. C.; Su W. F. Cylinder-to-gyroid phase transition in a rod-coil diblock copolymer. Soft Matter, 2012, 8(18), 4890-4893. doi:10.1039/c2sm07473ghttp://dx.doi.org/10.1039/c2sm07473g
Sinturel C.; Bates F. S.; Hillmyer M. A. High χ-low N block polymers: How far can we go? ACS Macro Lett., 2015, 4(9), 1044-1050. doi:10.1021/acsmacrolett.5b00472http://dx.doi.org/10.1021/acsmacrolett.5b00472
Aissou K.; Mumtaz M.; Fleury G.; Portale G.; Navarro C.; Cloutet E.; Brochon C.; Ross C. A.; Hadziioannou G. Sub-10 nm features obtained from directed self-assembly of semicrystalline polycarbosilane-based block copolymer thin films. Adv. Mater., 2015, 27(2), 261-265. doi:10.1002/adma.201404077http://dx.doi.org/10.1002/adma.201404077
Naidu S.; Ahn H.; Gong J.; Kim B.; Ryu D. Y. Phase behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine) copolymer. Macromolecules, 2011, 44(15), 6085-6093. doi:10.1021/ma200429vhttp://dx.doi.org/10.1021/ma200429v
Huang J. E.; Wang R. Y.; Tong Z. Z.; Xu J. T.; Fan Z. Q. Influence of ionic species on the microphase separation behavior of PCL-b-PEO/salt hybrids. Macromolecules, 2014, 47(23), 8359-8367. doi:10.1021/ma502057qhttp://dx.doi.org/10.1021/ma502057q
Pal J.; Sanwaria S.; Srivastava R.; Nandan B.; Horechyy A.; Stamm M.; Chen H. L. Hairy polymer nanofibers via self-assembly of block copolymers. J. Mater. Chem., 2012, 22(48), 25102-25107. doi:10.1039/c2jm33824fhttp://dx.doi.org/10.1039/c2jm33824f
Sidorenko A.; Tokarev I.; Minko S.; Stamm M. Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. J. Am. Chem. Soc., 2003, 125(40), 12211-12216. doi:10.1021/ja036085whttp://dx.doi.org/10.1021/ja036085w
Kuila B. K.; Chakraborty C.; Malik S. A synergistic coassembly of block copolymer and fluorescent probe in thin film for fine-tuning the block copolymer morphology and luminescence property of the probe molecules. Macromolecules, 2013, 46(2), 484-492. doi:10.1021/ma302041fhttp://dx.doi.org/10.1021/ma302041f
Tokarev I.; Krenek R.; Burkov Y.; Schmeisser D.; Sidorenko A.; Minko S.; Stamm M. Microphase separation in thin films of poly(styrene-block-4-vinylpyridine) copolymer-2-(4'-hydroxybenzeneazo)benzoic acid assembly. Macromolecules, 2005, 38(2), 507-516. doi:10.1021/ma048864ihttp://dx.doi.org/10.1021/ma048864i
Soininen A. J.; Tanionou I.; ten Brummelhuis N.; Schlaad H.; Hadjichristidis N.; Ikkala O.; Raula J.; Mezzenga R.; Ruokolainen J. Hierarchical structures in lamellar hydrogen bonded LC side chain diblock copolymers. Macromolecules, 2012, 45(17), 7091-7097. doi:10.1021/ma300820qhttp://dx.doi.org/10.1021/ma300820q
Naidu S.; Ahn H.; Lee H.; Jung Y. M.; Ryu D. Y. Transition behavior of hydrogen-bonding-mediated block copolymer mixtures. Macromolecules, 2010, 43(14), 6120-6126. doi:10.1021/ma100290vhttp://dx.doi.org/10.1021/ma100290v
Shi L. Y.; Zhou Y.; Fan X. H.; Shen Z. H. Remarkably rich variety of nanostructures and order-order transitions in a rod-coil diblock copolymer. Macromolecules, 2013, 46(13), 5308-5316. doi:10.1021/ma400944zhttp://dx.doi.org/10.1021/ma400944z
Tenneti K. K.; Chen X. F.; Li C. Y.; Shen Z. H.; Wan X. H.; Fan X. H.; Zhou Q. F.; Rong L. X.; Hsiao B. S. Influence of LC content on the phase structures of side-chain liquid crystalline block copolymers with bent-core mesogens. Macromolecules, 2009, 42(10), 3510-3517. doi:10.1021/ma8027563http://dx.doi.org/10.1021/ma8027563
Zhang Z. Y.; Zhang Q. K.; Shen Z. H.; Yu J. P.; Wu Y. X.; Fan X. H. Synthesis and characterization of new liquid crystalline thermoplastic elastomers containing mesogen-jacketed liquid crystalline polymers. Macromolecules, 2016, 49(2), 475-482. doi:10.1021/acs.macromol.5b02630http://dx.doi.org/10.1021/acs.macromol.5b02630
Wang T. J.; Li X. A.; Dong Z. J.; Huang S. A.; Yu H. F. Vertical orientation of nanocylinders in liquid-crystalline block copolymers directed by light. ACS Appl. Mater. Interfaces, 2017, 9(29), 24864-24872. doi:10.1021/acsami.7b06086http://dx.doi.org/10.1021/acsami.7b06086
Cai F.; Song T. F.; Yang B. W.; Lv X. D.; Zhang L. Q.; Yu H. F. Enhancement of solar thermal fuel by microphase separation and nanoconfinement of a block copolymer. Chem. Mater., 2021, 33(24), 9750-9759. doi:10.1021/acs.chemmater.1c03644http://dx.doi.org/10.1021/acs.chemmater.1c03644
Hibi Y.; Oguchi Y.; Shimizu Y.; Hashimoto K.; Kondo K.; Iyoda T. Self-template-assisted micro-phase segregation in blended liquid-crystalline block copolymers films toward three-dimensional structures. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(35), 21070-21078. doi:10.1073/pnas.2010284117http://dx.doi.org/10.1073/pnas.2010284117
Sano M.; Nakamura S.; Hara M.; Nagano S.; Shinohara Y.; Amemiya Y.; Seki T. Pathways toward photoinduced alignment switching in liquid crystalline block copolymer films. Macromolecules, 2014, 47(20), 7178-7186. doi:10.1021/ma501803ghttp://dx.doi.org/10.1021/ma501803g
TPPS Aggregates with Chirality Induced by Hydrogen Bonds from Polycationic Glycoconjugate
Construction of Poly(lipoic acid)-based Functional Hydrogels for Infected Skin Wound Healing
Structured Liquids: Design, Construction and Applications
Synthesis and Self-assembly of Asymmetric Molecular Brushes with Azobenzene-containing Side Chains
Related Author
No data
Related Institution
Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
School of Chemistry, Xi'an Jiaotong University
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology
Department of Polymer Science and Engineering, University of Massachusetts, Amherst
Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology