Published:20 November 2023,
Published Online:15 June 2023,
Received:28 March 2023,
Accepted:11 May 2023
Scan for full text
Cite this article
A series of polyetherimides (PEI-TAn) with different contents of TA structural units were prepared from amino-terminated aniline trimer (TA), bisphenol A type diethyl dianhydride and 4,4'-diaminodiphenyl ether by changing the feed ratio. In order to analyze the effect of introducing electroactive aniline trimer into PEI on material properties, PEI/TAn blends with different TA contents were prepared. The structure, thermal stability, glass transition temperature and dynamic mechanical properties of PEI-TAn were studied by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), 1H nuclear magnetic resonance (1H-NMR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The surface and volume resistivity of the copolymers and blends doped with dodecylbenzene sulfonic acid were compared and analyzed by using a surface/volume resistivity analyzer. It is found that the 5% thermal weight loss temperatures of the PEI-TAn are in the range of 417‒513 ℃, and the glass transition temperatures measured by DMA are about 237‒240 ℃, which imply that PEI-TAn have excellent thermal stability; The Young's modulus and elongation at break of the PEI-TAn films are in the range of 1.5‒2.3 GPa and 3.9%‒5.7% respectively. The dielectric constant and dielectric loss at 10 GHz are in the range of 2.7‒3.5 and 0.007‒0.013 respectively. The surface and volume resistivity of the PEI-TAn copolymer films are in the order of 107‒109, which is 7‒9 orders of magnitude lower than that of the PEI without TA structural unit, while the surface and volume resistivity of the PEI/TAn blend films is only 1‒2 orders of magnitude lower. The results show that polyetherimides with excellent performance and adjustable resistivity can be obtained by introducing electroactive TA units into the molecular structure of PEI.
以氨基封端的苯胺三聚体(TA)为改性单元,以双酚A型二醚二酐(BPADA)和4,4'-二氨基二苯醚(ODA)为单体,采用溶液两步法制备出TA结构单元含量不同的聚醚酰亚胺(PEI-TAn)共聚薄膜,并与PEI/TAn共混薄膜进行电性能对比,TA单元的引入使PEI-TAn的电阻率数量级由1015降至107,并可以提高材料的拉伸强度而耐热性保持不变.
Polyetherimide;
Aniline trimer;
Structure-performance;
Surface resistance
聚醚酰亚胺(PEI)是分子主链中同时含有酰亚胺环和醚键的一类特种工程塑料. 与聚酰亚胺(PI)相比,PEI的加工性能得到了提升[
降低材料表面电阻率的途径有2条[
综上所述,本文采用两步法将双酚A型二醚二酐(BPADA)、4,4'-二氨基二苯醚(ODA)与氨基封端的苯胺三聚体(TA)进行溶液共聚,得到了一系列TA含量不同的PEI-TAn,研究了TA含量变化对材料性能的影响,并对比分析了PEI/TAn共混体系的电性能,本文的研究工作对于低电阻率PEI材料的开发与应用有一定的借鉴意义.
试剂:双酚A型二醚二酐(BPADA),质量分数99.5%,安徽泽生科技有限公司,使用前经升华或乙酸酐重结晶,并在120 ℃下真空干燥24 h;4,4'-二氨基二苯醚(ODA),安徽泽生科技有限公司;氨基封端苯胺三聚体(TA),参照文献[
以BPADA作为二酐单体,与ODA、TA 2种二胺单体在NMP中进行两步法溶液共聚,通过调整TA与ODA的摩尔比,得到一系列PEI共聚物PEI-TAn,反应路线如
Fig. 1 Synthetic route of PEI-TAn.
1.3.1 未经掺杂的PEI-TAn薄膜的制备
用于力学性能及介电性能分析的聚合物薄膜为未经掺杂的PEI-TAn薄膜,其制备方法类似,以PEI-TA1为例,制备方法如下:称取1.00 g PEI-TA1粉末,加入10 mL DMAc中加热至120 ℃充分溶解,冷却至室温后,取适量溶液滴涂于直径100 mm、厚度3 mm的不锈钢板上,按如下程序升温干燥:50 ℃/3h、70 ℃/1h、100 ℃/1h、120 ℃/1h、150 ℃/1h、180 ℃/1h、200 ℃/1h、230 ℃/3h、280 ℃/1h、320 ℃/1h.
1.3.2 DBSA掺杂的PEI-TAn薄膜的制备
用于电阻率分析的聚合物薄膜有2种类型,其一为DBSA掺杂的共聚物PEI-TAn薄膜(其中PEI-TA0薄膜未加入DBSA),其二为经DBSA掺杂的TA与PEI-TA0共混的薄膜,用PEI/TAn表示该类型的薄膜.
共聚物薄膜的制备方法以PEI-TA1薄膜为例,制备方法为:称取1.00 g PEI-TA1粉末,加入10 mL DMAc中加热至120 ℃充分溶解,冷却至室温后加入0.5 mL DBSA搅拌3 h,得到墨绿色溶液. 涂膜及干燥程序如前所述.
1.3.3 DBSA掺杂的PEI/TAn薄膜的制备
称取1.00 g TA粉末加入10 mL水中,加入3 mL DBSA,室温搅拌3 h,抽滤,水洗,干燥之后得到掺杂态的TA.
以PEI/TA1薄膜为例,制备方法为:称取1.00 g PEI-TA0粉末和0.0413 g经DBSA掺杂的TA(TA的用量与制备PEI-TA1时单体TA的投料一致),加入10 mL DMAc中搅拌加热至120 ℃充分溶解,冷却后得到墨绿色溶液. 涂膜及干燥程序如前所述.
使用美国Varian公司 DLG400核磁共振波谱仪分析样品的核磁共振氢谱(1H-NMR)谱图. 使用日本Shimadzu公司的IRAffinity-1S型傅里叶变换红外光谱(FTIR)仪分析采用KBr压片法制得的样品谱图,波数范围4000~400 cm-1. 使用江苏哲晶玻璃仪器厂的乌氏黏度计(毛细管内径0.59 mm)在30 ℃恒温水浴中测定聚合物的特性黏数([η]),溶剂为DMAc,溶液浓度为0.5 g/dL. 使用美国TA公司Q20型示差扫描量热仪(DSC)测试聚合物的玻璃化转变温度(Tg),气氛为N2,温度范围40~350 ℃,升温速率15 ℃/min. 使用美国TA公司Q500型热失重分析仪分析样品的热稳定性,气氛为N2,温度范围40~800 ℃,升温速率10 ℃/min. 使用美国TA公司Q850型动态力学分析仪(DMA)测试聚合物薄膜的动态力学性能,温度范围30~300 ℃,升温速率3 ℃/min. 使用美国Instron公司5567A型电子万能材料试验机测试聚合物薄膜的拉伸性能,样条尺寸为6 mm ×40 mm,载荷100 N,拉伸速率5 mm/min. 使用美国Keysight Technologies公司E5080B矢量网络分析仪测试聚合物薄膜的介电常数与介电损耗,频率分别为10与20 GHz. 使用北京航天纵横检测仪器有限公司ZST-121表面体积电阻率测试仪测试不同聚合物薄膜样品的电阻率,测试电压为500 V.
如
Fig. 2 (a) Molecular structure of PEI-TAn; (b) FTIR spectra of PAA-TA1, PEI-TA1 and PEI-TA0; (c) 1H-NMR spectra of PEI-TA1 and PEI-TA0 (DMSO-d6).
PEI-TAn均有类似的红外谱图,以PEI-TA1为例,
与PAA-TA1对比可以看出,PEI-TA1谱图中3500~2500 cm-1的宽峰消失,并且在1381 cm-1处出现了新的吸收峰,表明PAA-TA1在反应中形成了酰亚胺环,且亚胺化完全. 相对于PEI-TA0来说,PEI-TA1在3400 cm-1左右显示出TA结构单元中芳香仲胺N―H的伸缩振动吸收峰,说明TA成功引入到聚合物的分子主链中.
S3+S7+S2+S5S4=(2x+2y)+4x+(2x+2y)+(4x+4y)4x+4y=5.812.00 |
计算得到的PEI-TA1的y/x实际值为0.105,同理得到其他共聚物的实际共聚比例与理论值的对比如
Sample | Feed ratio of TA/ODA | Theoretical value of y/x | Actual value of y/x | [ŋ] (dL/g) |
---|---|---|---|---|
PEI-TA0 | 0/10 | 0 | 0 | 0.737 |
PEI-TA1 | 1/9 | 0.111 | 0.105 | 0.710 |
PEI-TA2 | 1/8 | 0.125 | 0.117 | 0.687 |
PEI-TA3 | 1/7 | 0.143 | 0.136 | 0.632 |
PEI-TA4 | 1/6 | 0.167 | 0.163 | 0.605 |
PEI-TA5 | 1/5 | 0.200 | 0.190 | 0.557 |
PEI-TA6 | 1/4 | 0.250 | 0.212 | 0.547 |
采用乌氏黏度计测定了PEI-TAn的特性黏数[ŋ],如
所有PEI-TAn的TGA曲线表现出相同趋势,以PEI-TA2为例,其TGA曲线如
Fig. 3 (a) TGA curve of PEI-TA2 and the illustration shows DSC curve of PEI-TA2; (b) DMA curves of PEI-TAn films.
Sample | Td5(℃) | Td50(℃) | CR800 a(%) | Tg b(℃) | Tg c(℃) |
---|---|---|---|---|---|
PEI-TA0 | 513 | 709 | 40.1 | 222 | 237 |
PEI-TA1 | 492 | 797 | 49.8 | 217 | 238 |
PEI-TA2 | 507 | 778 | 49.3 | 209 | 239 |
PEI-TA3 | 496 | 772 | 49.6 | 210 | 238 |
PEI-TA4 | 496 | 742 | 48.1 | 213 | 239 |
PEI-TA5 | 508 | 686 | 46.9 | 222 | 239 |
PEI-TA6 | 417 | 782 | 48.9 | 204 | 240 |
a Which is “carbon residue at 800 ℃”; b Which is measured by DSC; c Which is measured by DMA.
从
Fig. 4 The σ-ε curves of PEI-TAn films.
Sample | Young's modulus (GPa) | Maximum stress (MPa) | Fracture stress (MPa) | Elongation at break (%) |
---|---|---|---|---|
PEI-TA0 | 1.5 | 44.9 | 40.9 | 5.7 |
PEI-TA1 | 1.8 | 48.6 | 44.6 | 5.5 |
PEI-TA2 | 1.8 | 56.0 | 55.1 | 5.3 |
PEI-TA3 | 1.9 | 59.0 | 59.0 | 5.2 |
PEI-TA4 | 2.1 | 59.7 | 59.7 | 4.9 |
PEI-TA5 | 2.2 | 61.6 | 61.6 | 4.6 |
PEI-TA6 | 2.3 | 64.4 | 64.4 | 3.9 |
Sample | Dk | Df×103 | ||
---|---|---|---|---|
10 GHz | 20 GHz | 10 GHz | 20 GHz | |
PEI-TA0 | 2.7 | 2.3 | 6.8 | 7.3 |
PEI-TA1 | 2.9 | 2.7 | 6.9 | 7.8 |
PEI-TA2 | 3.0 | 2.9 | 7.1 | 8.1 |
PEI-TA3 | 3.1 | 3.0 | 6.1 | 7.4 |
PEI-TA4 | 3.2 | 3.1 | 6.6 | 8.8 |
PEI-TA5 | 3.4 | 3.1 | 7.2 | 9.7 |
PEI-TA6 | 3.5 | 3.2 | 12.7 | 16.0 |
a Which is “dielectric constant”; b Which is “dielectric loss”.
由
Sample | ρV a(Ω·cm) | ρS b(Ω) | Sample | ρV(Ω·cm) | ρS(Ω) |
---|---|---|---|---|---|
PEI-TA0 | 9.4×1016 | 5.3×1016 | PEI/TA0 | 8.9×1015 | 2.5×1015 |
PEI-TA1 | 4.2×109 | 9.9×109 | PEI/TA1 | 3.9×1015 | 2.0×1015 |
PEI-TA2 | 1.3×109 | 4.0×109 | PEI/TA2 | 5.5×1014 | 3.1×1014 |
PEI-TA3 | 5.9×108 | 1.1×109 | PEI/TA3 | 9.3×1013 | 1.1×1014 |
PEI-TA4 | 2.1×108 | 3.2×108 | PEI/TA4 | 3.6×1013 | 9.9×1013 |
PEI-TA5 | 5.0×107 | 5.6×107 | PEI/TA5 | 2.5×1013 | 7.0×1013 |
PEI-TA6 | 2.6×107 | 2.2×107 | PEI/TA6 | 1.0×1013 | 1.4×1013 |
a Which is “volume resistivity”; b Which is “surface resistivity”.
Fig. 5 Relationship between resistivity and TA content of PEI-TAn and PEI/TAn films.
以氨基封端的苯胺三聚体(TA)为改性单元,以BPADA和ODA为单体,采用两步法溶液缩聚反应,制备出TA结构单元含量为0~20 mol%的PEI-TAn共聚物,研究了共聚物分子结构的变化与其性能之间的关系,并对比分析了共聚物薄膜和共混薄膜的电性能. 研究发现,将TA结构单元引入到聚合物的分子结构中,可以制备出一类具有较高耐热性、力学性能的聚醚酰亚胺,TA单元的引入赋予材料可调控的电性能,表面电阻率和体积电阻率由1015~1016数量级降低到107~109数量级,为聚醚酰亚胺材料的导电性能调控提供了思路. 同时,所制备的PEI-TAn薄膜都具有良好的热稳定性、机械性能和低介电性能,可以加工成防静电制品与耐磨损、抗冲击、尺寸精密的零部件等.
丁孟贤. 聚酰亚胺——化学、结构与性能的关系及材料. 北京: 科学出版社, 2006. 21-28. [Baidu Scholar]
Xu Z.; Croft Z. L.; Guo D.; Cao K.; Liu G. L. Recent development of polyimides: synthesis, processing, and application in gas separation. J. Polym. Sci., 2021, 59(11), 943-962. doi:10.1002/pol.20210001 [Baidu Scholar]
Pandelidi C, Maconachie T, Bateman S, Piegert S, Leary M, Brandt M. Parametric study on tensile and flexural properties of ULTEM 1010 specimens fabricated via FDM. Rapid Prototyping J., 2021, 27(2), 429-451. doi:10.1108/rpj-10-2019-0274 [Baidu Scholar]
Li Y. H.; Sun G. H.; Zhou Y.; Liu G. M.; Wang J.; Han S. H. Progress in low dielectric polyimide film. Prog. Org. Coat., 2022, 172, 107103. doi:10.1016/j.porgcoat.2022.107103 [Baidu Scholar]
Feng Y.; Zhou Y. H.; Zhang T. D.; Zhang C. H.; Zhang Y. Q.; Zhang Y.; Chen Q. G.; Chi Q. G. Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites. Energy Storage Mater., 2020, 25, 180-192. doi:10.1016/j.ensm.2019.10.016 [Baidu Scholar]
Sun L.; Shi Z. C.; Wang H. L.; Zhang K.; Dastan D.; Sun K.; Fan R. H. Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A, 2020, 8(11), 5750-5757. doi:10.1039/d0ta00903b [Baidu Scholar]
Guo M. F.; Jiang J. Y.; Shen Z. H.; Lin Y. H.; Nan C. W.; Shen Y. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: Enhanced breakdown strength and improved discharge efficiency. Mater. Today, 2019, 29, 49-67. doi:10.1016/j.mattod.2019.04.015 [Baidu Scholar]
Miao W. J.; Chen H. X.; Pan Z. B.; Pei X. L.; Li L.; Li P.; Liu J. J.; Zhai J. W.; Pan H. Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage. Compos. Sci. Technol., 2021, 201, 108501. doi:10.1016/j.compscitech.2020.108501 [Baidu Scholar]
de Leon A. C. C.; da Silva Í. G. M.; Pangilinan K. D.; Chen Q. Y.; Caldona E. B.; Advincula R. C. High performance polymers for oil and gas applications. React. Funct. Polym., 2021, 162, 104878. doi:10.1016/j.reactfunctpolym.2021.104878 [Baidu Scholar]
侯攀, 周科勇, 王明. 抗静电剂在高分子材料中的应用研究进展. 中国塑料, 2011, 25(7), 11-16. [Baidu Scholar]
Chen S.; Zhou B.; Ma M.; Shi Y. Q.; Wang X. Permanently antistatic and high transparent PMMA terpolymer: Compatilizer, antistatic agent, and the antistatic mechanism. Polym. Adv. Technol., 2018, 29(6), 1788-1794. doi:10.1002/pat.4285 [Baidu Scholar]
Jiang X. W.; Bin Y. Z.; Matsuo M. Electrical and mechanical properties of polyimide-carbon nanotubes composites fabricated by in situ polymerization. Polymer, 2005, 46(18), 7418-7424. doi:10.1016/j.polymer.2005.05.127 [Baidu Scholar]
Liu Y. D.; Lu S. Y.; Luo J.; Zhao Y. Q.; He J. S.; Liu C. L.; Chen Z. B.; Yu X. Q. Research progress of antistatic-reinforced polymer materials. Polym. Adv. Technol., 2023, 34(4), 1393-1404. doi:10.1002/pat.5978 [Baidu Scholar]
Zhu A. P.; Wang H. S.; Sun S. S.; Zhang C. Q. The synthesis and antistatic, anticorrosive properties of polyaniline composite coating. Prog. Org. Coat., 2018, 122, 270-279. doi:10.1016/j.porgcoat.2018.06.004 [Baidu Scholar]
Li K. D.; Zhang C.; Du Z. J.; Li H. Q.; Zou W. Preparation of humidity-responsive antistatic carbon nanotube/PEI nanocomposites. Synth. Met., 2012, 162(23), 2010-2015. doi:10.1016/j.synthmet.2012.09.014 [Baidu Scholar]
Ge J. J.; Zhang D.; Li Q.; Hou H. Q.; Graham M. J.; Dai L. M.; Harris F. W.; Cheng S. Z. D. Multiwalled carbon nanotubes with chemically grafted polyetherimides. J. Am. Chem. Soc., 2005, 127(28), 9984-9985. doi:10.1021/ja050924s [Baidu Scholar]
Butnaru I.; Chiriac A. P.; Asandulesa M.; Sava I.; Lisa G.; Damaceanu M. D. Tailoring poly(ether-imide) films features towards high performance flexible substrates. J. Ind. Eng. Chem., 2021, 93, 436-447. doi:10.1016/j.jiec.2020.10.023 [Baidu Scholar]
石传明, 孟晓宇, 杨礼德, 于安军, 丛川波, 周琼. 聚醚酰亚胺/氧化石墨烯复合材料的制备与性能. 合成材料老化与应用, 2016, 45(1), 24-27. doi:10.3969/j.issn.1671-5381.2016.01.006 [Baidu Scholar]
Cuenca-Bracamonte Q.; Yazdani-Pedram M.; Aguilar-Bolados H. Electrical properties of polyetherimide-based nanocomposites filled with reduced graphene oxide and graphene oxide-Barium titanate-based hybrid nanoparticles. Polymers, 2022, 14(20), 4266. doi:10.3390/polym14204266 [Baidu Scholar]
Aguilar-Bolados H.; Yazdani-Pedram M.; Quinteros-Jara E.; Cuenca-Bracamonte Q.; Quijada R.; Carretero-González J.; Avilés F.; Lopez-Manchado M. A.; Verdejo R. Synthesis of sustainable, lightweight and electrically conductive polymer brushes grafted multi-layer graphene oxide. Polym. Test., 2021, 93, 106986. doi:10.1016/j.polymertesting.2020.106986 [Baidu Scholar]
景遐斌, 王利祥, 王献红, 耿延候, 王佛松. 导电聚苯胺的合成、结构、性能和应用. 高分子学报, 2005, (5), 655-663. doi:10.3321/j.issn:1000-3304.2005.05.003 [Baidu Scholar]
Majeed A. H.; Mohammed L. A.; Hammoodi O. G.; Sehgal S.; Alheety M. A.; Saxena K. K.; Dadoosh S. A.; Mohammed I. K.; Jasim M. M.; Salmaan N. U. A review on polyaniline: synthesis, properties, nanocomposites, and electrochemical applications. Int. J. Polym. Sci., 2022, 2022, 1-19. doi:10.1155/2022/9047554 [Baidu Scholar]
Wang Y.; Tran H. D.; Liao L.; Duan X. F.; Kaner R. B. Nanoscale morphology, dimensional control, and electrical properties of oligoanilines. J. Am. Chem. Soc., 2010, 132(30), 10365-10373. doi:10.1021/ja1014184 [Baidu Scholar]
Guex A. G.; Spicer C. D.; Armgarth A.; Gelmi A.; Humphrey E. J.; Terracciano C. M.; Harding S. E.; Stevens M. M. Electrospun aniline-tetramer-co-polycaprolactone fibers for conductive, biodegradable scaffolds. MRS Commun., 2017, 7(3), 375-382. doi:10.1557/mrc.2017.45 [Baidu Scholar]
Tian X. Z.; Yang R.; Ma J. J.; Ni Y. H.; Deng H. B.; Dai L.; Tan J. J.; Zhang M. Y.; Jiang X. A novel ternary composite of polyurethane/polyaniline/nanosilica with antistatic property and excellent mechanical strength: Preparation and mechanism. Chinese J. Polym. Sci., 2022, 40(7), 789-798. doi:10.1007/s10118-022-2703-7 [Baidu Scholar]
陈梁. 苯胺低聚物的分子设计及其性质的研究. 吉林大学博士学位论文, 2005. [Baidu Scholar]
Chao D. M.; Cui L. L.; Li Z. C.; Lu X. F.; Mao H.; Zhang W. J.; Wei Y. Electroactive copolymers with oligoanilines in the main chain via oxidative coupling polymerization. Macromol. Chem. Phys., 2006, 207(18), 1691-1696. doi:10.1002/macp.200600280 [Baidu Scholar]
Venkatesan G.; Dancik Y.; Sinha A.; Bigliardi M.; Srinivas R.; Dawson T.; Valiyaveettil S.; Bigliardi P.; Pastorin G. Facile synthesis of oligo anilines as permanent hair dyes: how chemical modifications impart colour and avoid toxicity. New J. Chem., 2019, 43(41), 16188-16199. doi:10.3760/cma.j.cn371468-20221107-00661 [Baidu Scholar]
0
Views
19
Downloads
0
CSCD
Related Articles
Related Author
Related Institution