浏览全部资源
扫码关注微信
1.电子科技大学基础与前沿研究院 成都 610054
2.电子科技大学长三角研究院(湖州) 湖州 313001
3.成都大学高等研究院 成都 610106
Jia-xi Cui, E-mail: jiaxi.cui@uestc.edu.cn
Published:20 October 2023,
Published Online:28 June 2023,
Received:29 March 2023,
Accepted:17 May 2023
扫 描 看 全 文
熊新红,王宏,杨莉等.含引发单体交联聚合物的光调控可逆生长[J].高分子学报,2023,54(10):1386-1394.
Xiong Xin-hong,Wang Hong,Yang Li,et al.Photo-regulated Reversible Growth of Inimer-containing Crosslinked Polymers[J].ACTA POLYMERICA SINICA,2023,54(10):1386-1394.
熊新红,王宏,杨莉等.含引发单体交联聚合物的光调控可逆生长[J].高分子学报,2023,54(10):1386-1394. DOI: 10.11777/j.issn1000-3304.2023.23081.
Xiong Xin-hong,Wang Hong,Yang Li,et al.Photo-regulated Reversible Growth of Inimer-containing Crosslinked Polymers[J].ACTA POLYMERICA SINICA,2023,54(10):1386-1394. DOI: 10.11777/j.issn1000-3304.2023.23081.
受真涡虫可逆生长现象的启发,设计了一种光控可逆生长材料. 该设计基于一种可光解的引发单体(vinyl-
o
NB-Br),当把其共聚到交联聚合物内部后,可通过可见光引发在交联聚合物中溶胀的单体(
N
-异丙基丙烯酰胺,NIPAAm)接枝聚合,实现材料增大生长,而通过紫外光切断所接枝的聚合物(PNIPAAm),并通过洗涤移除游离的聚合物来使得材料收缩,达到逆生长的目的. 材料的生长和逆生长均可通过交联材料中引发单体的含量和营养液中接枝单体的浓度来调控;在可逆生长过程中,材料的本体疏水性和力学性质均可明显改变:材料韧性在生长了PNIPAAm后明显增加(从0.15 MJ/m
3
到1.18 MJ/m
3
),而在逆生长后降低(0.25 MJ/m
3
). 可见,光控可逆生长是一种原位后调节交联聚合物材料性能的简单、高效方法.
Inspired by the reversible growth of planaria
we develop a class of photo-regulated reversible growing materials. The materials are made from a photolabile inimer (vinyl-
o
NB-Br) consisting of three functional moieties
i.e.
acrylate-based double bond for incorporation within a network
Br group for further visible light-induced grafting polymerization
and
o
-nitro benzyl (
o
NB) moiety for UV light-triggered cleavage. This inimer is copolymerized with di(ethylene glycol)ethyl ether acrylate to prepare "seed" elastomers (I-PDEEA). For growth
these seed elastomers are soaked in "nutrient" solutions containing monomer (NIPAAm) and photoinitiator (Mn
2
(CO)
10
). The swollen samples are then irradiated by visible light (460 nm)
which induces successful polymerization of NIPAAm from the polymer networks to get the grown material (I-PDEEA-PNIPAAm). For degrowth
the grown samples are exposed to UV light (360 nm)
under which the
o
NB undergoes photocleavage reaction to free the grafted PNIPAAm chains. The samples shrink when these free chains are extracted from the polymer network
showing a degrowing effect. The degrowth can be directly conducted in a DMF solution
leading to direct contraction. Our study indicates that the network topologies and the neat mass change in growth and degrowth can be regulated by the inimer fractions in the seed polymer networks and the concentrations of NIPAAm in nutrient solutions. This reversible growth method allows post-modifying crosslinked polymers in mass
size
bulk
and mechanical properties. For example
the growth of PNIPAAm can lead to a neat increase of up to 0.55 mg/cm
3
and tune the hydrophobic matrices to be hydrophilic. Moreover
the materials are stiffened and toughened (toughness: from 0.15 MJ/m
3
to 1.18 MJ/m
3
). After degrowth
the samples return to hydrophobic
soft
and brittle states (toughness: 0.25 MJ/m
3
). These results indicate that photo-regulated reversible growth is a facile
efficient method for post-regulating the properties of crosslinked polymer materials
in situ
.
可逆生长光调控交联聚合物力学性能
Reversible growthPhoto-regulatedCrosslinked polymersMechanical property
Ivankovic M.; Haneckova R.; Thommen A.; Grohme M. A.; Vila-Farré M.; Werner S.; Rink J. C. Model systems for regeneration: planarians. Development, 2019, 146(17), dev167684. doi:10.1242/dev.167684http://dx.doi.org/10.1242/dev.167684
Baguñá J.; Romero R. Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia, 1981, 84(1), 181-194. doi:10.1007/bf00026179http://dx.doi.org/10.1007/bf00026179
Zheng N.; Xu Y.; Zhao Q.; Xie T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev., 2021, 121(3), 1716-1745. doi:10.1021/acs.chemrev.0c00938http://dx.doi.org/10.1021/acs.chemrev.0c00938
Lutz J. F.; Lehn J. M.; Meijer E. W.; Matyjaszewski K. From precision polymers to complex materials and systems. Nat. Rev. Mater., 2016, 1(5), 1-14. doi:10.1038/natrevmats.2016.24http://dx.doi.org/10.1038/natrevmats.2016.24
Yang Y.; Urban M. W. Self-healing polymeric materials. Chem. Soc. Rev., 2013, 42(17), 7446-7467. doi:10.1039/c3cs60109ahttp://dx.doi.org/10.1039/c3cs60109a
Scheutz G. M.; Lessard J. J.; Sims M. B.; Sumerlin B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc., 2019, 141(41), 16181-16196. doi:10.1021/jacs.9b07922http://dx.doi.org/10.1021/jacs.9b07922
张泽平, 容敏智, 章明秋. 基于可逆共价化学的交联聚合物加工成型研究-聚合物工程发展的新挑战. 高分子学报, 2018, (7), 829-852. doi:10.11777/j.issn1000-3304.2018.18060http://dx.doi.org/10.11777/j.issn1000-3304.2018.18060
Maeda T.; Otsuka H.; Takahara A. Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog. Polym. Sci., 2009, 34(7), 581-604. doi:10.1016/j.progpolymsci.2009.03.001http://dx.doi.org/10.1016/j.progpolymsci.2009.03.001
Fortman D.; Brutman J. P.; De Hoe G. X.; Snyder R. L.; Dichtel W. R.; Hillmyer M. A. Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustain. Chem. Eng., 2018, 6(9), 11145-11159. doi:10.1021/acssuschemeng.8b02355http://dx.doi.org/10.1021/acssuschemeng.8b02355
Lendlein A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed., 2002, 41(12), 2034. doi:10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-mhttp://dx.doi.org/10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m
Moulin E.; Faour L.; Carmona-Vargas C. C.; Giuseppone N. From molecular machines to stimuli-responsive materials. Adv. Mater., 2020, 32(20), 1906036. doi:10.1002/adma.201906036http://dx.doi.org/10.1002/adma.201906036
Chen M.; Gu Y. W.; Singh A.; Zhong M. J.; Jordan A. M.; Biswas S.; Korley L. T. J.; Balazs A. C.; Johnson J. A. Living additive manufacturing: transformation of parent gels into diversely functionalized daughter gels made possible by visible light photoredox catalysis. ACS Cent. Sci., 2017, 3(2), 124-134. doi:10.1021/acscentsci.6b00335http://dx.doi.org/10.1021/acscentsci.6b00335
Cuthbert J.; Beziau A.; Gottlieb E.; Fu L. Y.; Yuan R.; Balazs A. C.; Kowalewski T.; Matyjaszewski K. Transformable materials: structurally tailored and engineered macromolecular (STEM) gels by controlled radical polymerization. Macromolecules, 2018, 51(10), 3808-3817. doi:10.1021/acs.macromol.8b00442http://dx.doi.org/10.1021/acs.macromol.8b00442
Matsuda T.; Kawakami R.; Namba R.; Nakajima T.; Gong J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science, 2019, 363(6426), 504-508. doi:10.1126/science.aau9533http://dx.doi.org/10.1126/science.aau9533
Xiong X. H.; Wang S.; Xue L. L.; Wang H.; Cui J. X. Growing strategy for postmodifying cross-linked polymers' bulky size, shape, and mechanical properties. ACS Appl. Mater. Interfaces, 2022, 14(6), 8473-8481. doi:10.1021/acsami.1c23954http://dx.doi.org/10.1021/acsami.1c23954
Xue L. L.; Xiong X. H.; Krishnan B. P.; Puza F.; Wang S.; Zheng Y. J.; Cui J. X. Light-regulated growth from dynamic swollen substrates for making rough surfaces. Nat. Commun., 2020, 11(1), 963. doi:10.1038/s41467-020-14807-xhttp://dx.doi.org/10.1038/s41467-020-14807-x
Xue J.; Yin X. W.; Xue L. L.; Zhang C. L.; Dong S. H.; Yang L.; Fang Y. L.; Li Y.; Li L.; Cui J. X. Publisher correction: self-growing photonic composites with programmable colors and mechanical properties. Nat. Commun., 2023, 14, 1892. doi:10.1038/s41467-023-37723-2http://dx.doi.org/10.1038/s41467-023-37723-2
Fang Y. L.; Chang Q.; Xiong X. H.; Dong S. H.; Zhang C. L.; Yang L.; Cui J. X. Orthogonal growth for fabricating hydrogel sensors and circuit boards with in situ post-tunable performance. Adv. Funct. Mater., 2022, 32(41), 2206222. doi:10.1002/adfm.202206222http://dx.doi.org/10.1002/adfm.202206222
Wang H.; Xiong X. H.; Yang L.; Fang Y. L.; Xue J.; Cui J. X. Alternating growth for in situ post-programing hydrogels' sizes and performance. Adv. Funct. Mater., 2023, 33(5), 2212402. doi:10.1002/adfm.202212402http://dx.doi.org/10.1002/adfm.202212402
Xu X. N.; Fang Z. Z.; Jin B. J.; Mu H. F.; Shi Y. P.; Xu Y.; Chen G. C.; Zhao Q.; Zheng N.; Xie T. Regenerative living 4D printing via reversible growth of polymer networks. Adv. Mater., 2023, 35(16), 2209824. doi:10.1002/adma.202209824http://dx.doi.org/10.1002/adma.202209824
Chen D.; Ni C. J.; Xie L. L.; Li Y.; Deng S. H.; Zhao Q.; Xie T. Homeostatic growth of dynamic covalent polymer network toward ultrafast direct soft lithography. Sci. Adv., 2021, 7(43), eabi7360. doi:10.1126/sciadv.abi7360http://dx.doi.org/10.1126/sciadv.abi7360
Han L.; Zheng Y. J.; Luo H.; Feng J.; Engstler R.; Xue L. L.; Jing G. Y.; Deng X.; del Campo A.; Cui J. X. Macroscopic self-evolution of dynamic hydrogels to create hollow interiors. Angew. Chem. Int. Ed., 2020, 59(14), 5611-5615. doi:10.1002/anie.201913574http://dx.doi.org/10.1002/anie.201913574
Jian N. N.; Guo R.; Zuo L.; Sun Y. B.; Xue Y.; Liu J.; Zhang K. Bioinspired self-growing hydrogels by harnessing interfacial polymerization. Adv. Mater., 2023, 35(12), 2370082. doi:10.1002/adma.202370082http://dx.doi.org/10.1002/adma.202370082
Mu Q. F.; Cui K. P.; Wang Z. J.; Matsuda T.; Cui W.; Kato H.; Namiki S.; Yamazaki T.; Frauenlob M.; Nonoyama T.; Tsuda M.; Tanaka S.; Nakajima T.; Gong J. P. Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat. Commun., 2022, 13, 6213. doi:10.1038/s41467-022-34044-8http://dx.doi.org/10.1038/s41467-022-34044-8
Fang Y. L.; Xue J.; Wang H.; Yang L.; Dong S. H.; Cui J. X. Damage restoration in rigid materials via a keloid-inspired growth process. J. Mater. Chem. A, 2022, 10(1), 174-179. doi:10.1039/d1ta08713dhttp://dx.doi.org/10.1039/d1ta08713d
Xiong X. H.; Xue L. L.; Wang S.; Zhao S. F.; Guo X.; Li M.; Cui J. X. In situ variation of interpenetrating polymer network topology using a photolabile connector. Chinese J. Polym. Sci., 2022, 40(11), 1317-1322. doi:10.1007/s10118-022-2755-8http://dx.doi.org/10.1007/s10118-022-2755-8
Xiong X. H.; Xue L. L.; Cui J. X. Phototriggered growth and detachment of polymer brushes with wavelength selectivity. ACS Macro Lett., 2018, 7(2), 239-243. doi:10.1021/acsmacrolett.7b00989http://dx.doi.org/10.1021/acsmacrolett.7b00989
Cui J. X.; Miguel V. S.; del Campo A. Light-triggered multifunctionality at surfaces mediated by photolabile protecting groups. Macromol. Rapid Commun., 2013, 34(4), 310-329. doi:10.1002/marc.201200634http://dx.doi.org/10.1002/marc.201200634
0
Views
41
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution