浏览全部资源
扫码关注微信
北京分子科学国家研究中心 高分子化学与物理教育部重点实验室 北京大学软物质科学与工程中心 化学与分子工程学院 北京 100871
Zhi-hao Shen, E-mail: zshen@pku.edu.cn
Xing-he Fan, E-mail: fanxh@ pku.edu.cn
Published:20 October 2023,
Published Online:13 July 2023,
Received:30 March 2023,
Accepted:25 May 2023
扫 描 看 全 文
刘赟,杨世楚,沈志豪等.氢键构筑的甲壳型液晶高分子的设计合成和自组装[J].高分子学报,2023,54(10):1555-1567.
Liu Yun,Yang Shi-chu,Shen Zhi-hao,et al.Design, Synthesis, and Self-assembly of Mesogen-Jacketed Liquid Crystalline Polymers Constructed by Hydrogen Bonding[J].ACTA POLYMERICA SINICA,2023,54(10):1555-1567.
刘赟,杨世楚,沈志豪等.氢键构筑的甲壳型液晶高分子的设计合成和自组装[J].高分子学报,2023,54(10):1555-1567. DOI: 10.11777/j.issn1000-3304.2023.23084.
Liu Yun,Yang Shi-chu,Shen Zhi-hao,et al.Design, Synthesis, and Self-assembly of Mesogen-Jacketed Liquid Crystalline Polymers Constructed by Hydrogen Bonding[J].ACTA POLYMERICA SINICA,2023,54(10):1555-1567. DOI: 10.11777/j.issn1000-3304.2023.23084.
通过引入氢键的方法,以聚(4-乙烯基吡啶) (P4VP)为氢键受体、含羧基的小分子为氢键给体,构筑了一类新结构的超分子甲壳型液晶高分子(MJLCP). 利用傅里叶红外光谱(FTIR)、广角X射线散射等表征手段证明了氢键的形成,并系统研究了小分子的化学结构对超分子型MJLCPs液晶相行为的影响. 结果表明,由于结构中只含1个(8MP)和3个苯环(4TP、6TP)且烷基尾链较短的氢键给体小分子在与P4VP复合时的“甲壳”效应较弱,P4VP(4TP)
x
、P4VP(6TP)
x
和P4VP(8MP)
x
3类复合物在复合比例
x
=1.0时仍处于无序状态. 而尺寸更大的小分子氢键复合物P4VP(8TP)
x
、P4VP(10TP)
x
、P4VP(12MP)
x
和P4VP(16MP)
x
则随着复合比例的增加可以出现从无定形态向近晶(Sm)相结构的转变,并且随着烷基尾链长度和小分子刚性的增加,出现液晶相的最低复合比例逐渐减小. 对于P4VP (12TP)
x
这类氢键给体分子刚性较强且具有长烷基尾链的复合物,P4VP链在更高的复合比例下,为了容纳更多的小分子,还发生了从Sm相到六方柱状(Col
h
)相的结构转变. 然而,氢键给体分子过大会阻碍氢键的形成,P4VP (8PP)
x
在复合比例很低时出现了宏观相分离现象. 氢键的引入大大简化了MJLCPs的构筑方法,通过对小分子化学结构和复合比例的控制可以实现对液晶相结构的灵活调控,为具有复杂结构的MJLCPs的分子设计提供了新的思路.
A new type of supramolecular mesogen-jacketed liquid crystalline polymer (MJLCP) was constructed by hydrogen bonding with poly(4-vinyl pyridine) (P4VP) as the hydrogen-bonding acceptor and carboxyl-containing molecules as hydrogen-bonding donors. The formation of hydrogen bonds was proven by Fourier-transform infrared spectroscopy (FTIR) and wide-angle X-ray scattering
and the effect of molecular structures on the phase behaviors of supramolecular MJLCPs was systematically studied. The results showed that because the "jacketing" effect of hydrogen-bonding donor molecules with only one (8MP) and three benzene rings (4TP and 6TP) and relatively short alkyl-chain tails was not strong enough when they were complexed with P4VP
the complexes P4VP(4TP)
x
P4VP(6TP)
x
and P4VP(8MP)
x
are disordered at a molar complexing ratio
x
(between the donor and the acceptor) of 1.0. The four types of complexes P4VP(8TP)
x
P4VP(10TP)
x
P4VP(12MP)
x
and P4VP(16MP)
x
undergo a transition from an disordered structure to the smectic (Sm) phase when the complexing ratio increases
and the minimum ratio for the appearance of liquid crystalline phases gradually decreases when the length of alkyl-chain tails and the rigidity of the hydrogen-bonding donor increase. Because of the high rigidity of the hydrogen-bonding donor and its long alkyl-chain tails
the P4VP(12TP)
x
undergoes a phase transition from disordered to the Sm phase and then to a hexagonal columnar (Col
h
) phase with the increase in the complexing ratio. However
if the size of the hydrogen-bonding donor molecule is too large
the formation of hydrogen bonds would be hindered
and macroscopic phase separation occurs in P4VP(8PP)
x
even when the complexing ratio is very low. The use of hydrogen bonding greatly simplifies the construction of MJLCPs. The liquid crystalline phase can be flexibly regulated by controlling the structure of small molecules and the complexing ratio
which provides a new idea for the structural design of MJLCPs with complex structures.
甲壳型液晶高分子氢键超分子液晶自组装
Mesogen-jacketed liquid crystalline polymerHydrogen bondingSupramolecular liquid crystalSelf-assembly
Jongen L.; Goderis B.; Dolbnya I.; Binnemans K. Influence of the chain length on the thermal behavior of lanthanide(III) 4-alkoxybenzoates. Chem. Mater., 2003, 15(1), 212-217. doi:10.1021/cm0212461http://dx.doi.org/10.1021/cm0212461
Kato T.; Frechet J. M. J. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. J. Am. Chem. Soc., 1989, 111(22), 8533-8534. doi:10.1021/ja00204a044http://dx.doi.org/10.1021/ja00204a044
Kato T.; Kato T.; Fréchet J. M. J.; Uryu T.; Kaneuchi F.; Jin C.; Fréchet J. M. J. Hydrogen-bonded liquid crystals built from hydrogen-bonding donors and acceptors infrared study on the stability of the hydrogen bond between carboxylic acid and pyridyl moieties. Liq. Cryst., 2006, 33(11-12), 1429-1437. doi:10.1080/02678290601119807http://dx.doi.org/10.1080/02678290601119807
Broer D. J.; Bastiaansen C. M. W.; Debije M. G.; Schenning A. P. H. J. Functional organic materials based on polymerized liquid-crystal monomers: Supramolecular hydrogen-bonded systems. Angew. Chem. Int. Ed., 2012, 51(29), 7102-7109. doi:10.1002/anie.201200883http://dx.doi.org/10.1002/anie.201200883
González-Rodríguez D.; Schenning A. P. H. J. Hydrogen-bonded supramolecular π-functional materials. Chem. Mater., 2011, 23(3), 310-325. doi:10.1021/cm101817hhttp://dx.doi.org/10.1021/cm101817h
Kanie K.; Yasuda T.; Nishii M.; Ujiie S.; Kato T. Hydrogen-bonded lyotropic liquid crystals of folic acids: responses to environment by exhibiting different complex patterns. Chem. Lett., 2001, 30(6), 480-481. doi:10.1246/cl.2001.480http://dx.doi.org/10.1246/cl.2001.480
Lugger S. J. D.; Houben S. J. A.; Foelen Y.; Debije M. G.; Schenning A. P. H. J.; Mulder D. J. Hydrogen-bonded supramolecular liquid crystal polymers: Smart materials with stimuli-responsive, self-healing, and recyclable properties. Chem. Rev., 2022, 122(5), 4946-4975. doi:10.1021/acs.chemrev.1c00330http://dx.doi.org/10.1021/acs.chemrev.1c00330
Jiang Z.; Bhaskaran A.; Aitken H. M.; Shackleford I. C. G.; Connal L. A. Using synergistic multiple dynamic bonds to construct polymers with engineered properties. Macromol. Rapid Commun., 2019, 40(10), e1900038. doi:10.1002/marc.201900038http://dx.doi.org/10.1002/marc.201900038
Hofman A. H.; Chen Y. X.; ten Brinke G.; Loos K. Interaction strength in poly(4-vinylpyridine)-n-alkylphenol supramolecular comb-shaped copolymers. Macromolecules, 2015, 48(5), 1554-1562. doi:10.1021/acs.macromol.5b00141http://dx.doi.org/10.1021/acs.macromol.5b00141
Wang S. J.; Xu Y. S.; Yang S. A.; Chen E. Q. Phase behavior of a hydrogen-bonded polymer with lamella-to-cylinder transition: complex of poly(4-vinylpyridine) and small dendritic benzoic acid derivative. Macromolecules, 2012, 45(21), 8760-8769. doi:10.1021/ma301783hhttp://dx.doi.org/10.1021/ma301783h
Xiao A. Q.; Lyu X. L.; Pan H. B.; Tang Z. H.; Zhang W.; Shen Z. H.; Fan X. H. Homeotropic alignment and selective adsorption of nanoporous polymer film polymerized from hydrogen-bonded liquid crystal. Chinese J. Polym. Sci., 2020, 38(11), 1185-1191. doi:10.1007/s10118-020-2431-9http://dx.doi.org/10.1007/s10118-020-2431-9
Harris K. D.; Bastiaansen C. W. M.; Lub J.; Broer D. J. Self-assembled polymer films for controlled agent-driven motion. Nano Lett., 2005, 5(9), 1857-1860. doi:10.1021/nl0514590http://dx.doi.org/10.1021/nl0514590
Harris K. D.; Bastiaansen C. W. M.; Broer D. J. Physical properties of anisotropically swelling hydrogen-bonded liquid crystal polymer actuators. J. Microelectromech. Syst., 2007, 16(2), 480-488. doi:10.1109/jmems.2006.886033http://dx.doi.org/10.1109/jmems.2006.886033
Harris K. D.; Bastiaansen C. W. M.; Broer D. J. A glassy bending-mode polymeric actuator which deforms in response to solvent polarity. Macromol. Rapid Commun., 2006, 27(16), 1323-1329. doi:10.1002/marc.200600342http://dx.doi.org/10.1002/marc.200600342
Shishmanova I. K.; Bastiaansen C. W. M.; Schenning A. P. H. J.; Broer D. J. Two-dimensional pH-responsive printable smectic hydrogels. Chem. Commun., 2012, 48(38), 4555-4557. doi:10.1039/c2cc16873ahttp://dx.doi.org/10.1039/c2cc16873a
Bisoyi H. K.; Li Q. A. Liquid crystals: versatile self-organized smart soft materials. Chem. Rev., 2022, 122(5), 4887-4926. doi:10.1021/acs.chemrev.1c00761http://dx.doi.org/10.1021/acs.chemrev.1c00761
Sijbesma R. P.; Meijer E. W. Quadruple hydrogen bonded systems. Chem. Commun., 2003, (1), 5-16. doi:10.1039/b205873chttp://dx.doi.org/10.1039/b205873c
Feldman K. E.; Kade M. J.; Meijer E. W.; Hawker C. J.; Kramer E. J. Model transient networks from strongly hydrogen-bonded polymers. Macromolecules, 2009, 42(22), 9072-9081. doi:10.1021/ma901668whttp://dx.doi.org/10.1021/ma901668w
Zhou Q. F.; Zhu X. L.; Wen Z. Q. Liquid-crystalline side-chain polymers without flexible spacer. Macromolecules, 1989, 22(1), 491-493. doi:10.1021/ma00191a094http://dx.doi.org/10.1021/ma00191a094
Yu Z. N.; Tu H. L.; Wan X. H.; Chen X. F.; Zhou Q. F. Synthesis and characterization of mesogen-jacketed liquid-crystal polymers based on 2, 5-bis(4'-alkoxyphenyl)styrene. J. Polym. Sci. A, 2003, 41(10), 1454-1464.
Gao L. C.; Fan X. H.; Shen Z. H.; Chen X. F.; Zhou Q. F. Jacketed polymers: controlled synthesis of mesogen-jacketed polymers and block copolymers. J. Polym. Sci. A, 2009, 47(2), 319-330. doi:10.1002/pola.23128http://dx.doi.org/10.1002/pola.23128
Xu Y. D.; Qu W.; Yang Q. A.; Zheng J. K.; Shen Z. H.; Fan X. H.; Zhou Q. F. Synthesis and characterization of mesogen-jacketed liquid crystalline polymers through hydrogen-bonding. Macromolecules, 2012, 45(6), 2682-2689. doi:10.1021/ma202742khttp://dx.doi.org/10.1021/ma202742k
张希, 王力彦, 徐江飞, 陈道勇, 史林启, 周永丰, 沈志豪. 聚合物超分子体系: 设计、组装与功能. 高分子学报, 2019, 50, 973-987. doi:10.11777/j.issn1000-3304.2019.19no6http://dx.doi.org/10.11777/j.issn1000-3304.2019.19no6
Yang S. Q.; Qu W.; Pan H. B.; Zhang Y. D.; Zheng S. J.; Fan X. H.; Shen Z. H. Effects of main chain and acceptor content on phase behaviors of hydrogen-bonded main-chain/side-chain combined liquid crystalline polymers. Polymer, 2016, 84, 355-364. doi:10.1016/j.polymer.2016.01.018http://dx.doi.org/10.1016/j.polymer.2016.01.018
Tao L.; Li M. L.; Yang K. P.; Guan Y.; Wang P.; Shen Z. H.; Xie H. L. Color-tunable and stimulus-responsive luminescent liquid crystalline polymers fabricated by hydrogen bonding. ACS Appl. Mater. Interfaces, 2019, 11(16), 15051-15059. doi:10.1021/acsami.9b01476http://dx.doi.org/10.1021/acsami.9b01476
0
Views
30
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution