浏览全部资源
扫码关注微信
厦门大学材料学院 厦门 361005
Lei Li, E-mail: lilei@xmu.edu.cn
Published:20 October 2023,
Published Online:11 July 2023,
Received:30 March 2023,
Accepted:18 May 2023
扫 描 看 全 文
戴晓璇,雷育杰,李士俊等.自由基交替共聚法制备酰亚胺基微孔有机聚合物[J].高分子学报,2023,54(10):1486-1497.
Dai Xiao-xuan,Lei Yu-jie,Li Shi-jun,et al.Preparation of Imide-based Microporous Organic Polymers by Alternating Free Radical Copolymerization[J].ACTA POLYMERICA SINICA,2023,54(10):1486-1497.
戴晓璇,雷育杰,李士俊等.自由基交替共聚法制备酰亚胺基微孔有机聚合物[J].高分子学报,2023,54(10):1486-1497. DOI: 10.11777/j.issn1000-3304.2023.23085.
Dai Xiao-xuan,Lei Yu-jie,Li Shi-jun,et al.Preparation of Imide-based Microporous Organic Polymers by Alternating Free Radical Copolymerization[J].ACTA POLYMERICA SINICA,2023,54(10):1486-1497. DOI: 10.11777/j.issn1000-3304.2023.23085.
通过Friedel-Crafts 烷基化反应发生的超交联聚合会产生大量腐蚀性气体以及废弃的Lewis酸催化剂. 为了实现微孔有机聚合物的绿色制备工艺,选用3类双马来酰亚胺单体与4种乙烯基醚单体进行自由基共聚,制备了12种新型酰亚胺基超交联微孔有机聚合物材料. 通过反应单体之间形成电荷转移配合物,可以实现自由基交替共聚. 得到的多孔聚合物具有可预测的分子结构和高比表面积(591 m
2
/g),表现出优异的CO
2
/N
2
吸附选择性(74.38),在CO
2
捕获和气体分离方面具有良好的应用前景. 本研究拓展了自由基共聚超交联微孔聚合物构筑单元的选择范围,对微孔有机聚合物绿色制备具有参考价值.
Hyper-crosslinked organic microporous polymers (HOMPs) are constructed by connecting aromatic building blocks with short carbon bridges
without lab-cost work and expensive catalysts in comparison with metal organic frameworks (MOFs)
covalent organic frameworks (COFs) and conjugated microporous polymers (CMPs) counterparts. Usually
hyper-cross-linking processes
via
Friedel-Craft alkylation reaction produce a large number of corrosive gases during reaction process and waste Lewis acid catalysts after polymerization. In order to achieve greener preparation protocol
in this study
three bismaleimide monomers (
m
-PBM
p
-PBM and DBM) and four vinyl ethers (DOE
DVE
TVE and TAE) are employed as building blocks for radical polymerization
and twelve cross-linked porous polyimides have been successfully prepared. Thanks to the opposite polarity structure
the alternating copolymerization between the above donor and acceptor monomers is very likely to occur due to the formation of charge-transfer complexes
endowing the obtained polymers with predictable and controllable molecular architectures. In addition
only trace amounts of initiator are required for radical copolymerization and no by-products are generated
which greatly simplify the post-processing of the polymers. The highly polar imine rings and abundant microporous structure provide the products good thermal stability
high specific surface area (591 m
2
/g)
and excellent CO
2
/N
2
selectivity (74.38). This study benefits for exploring new building blocks to construct microporous polymers and probe their practical applications.
自由基交替共聚微孔聚酰亚胺超交联聚合物CO2捕获和存储
Radical alternating copolymerizationPorous polyimidesHyper-crosslinked polymersCarbon dioxide (CO2) capture and storage
Lee J. Y.; Wood C. D.; Bradshaw D.; Rosseinsky M. J.; Cooper A. I. Hydrogen adsorption in microporous hypercrosslinked polymers. Chem. Commun. (Camb), 2006, (25), 2670-2672. doi:10.1039/b604625hhttp://dx.doi.org/10.1039/b604625h
Zhu X.; Mahurin S. M.; An S. H.; Do-Thanh C. L.; Tian C. C.; Li Y. K.; Gill L. W.; Hagaman E. W.; Bian Z. J.; Zhou J. H.; Hu J.; Liu H. L.; Dai S. Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chem. Commun. (Camb), 2014, 50(59), 7933-7936. doi:10.1039/c4cc01588fhttp://dx.doi.org/10.1039/c4cc01588f
Furukawa H.; Yaghi O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc., 2009, 131(25), 8875-8883. doi:10.1021/ja9015765http://dx.doi.org/10.1021/ja9015765
Shultz A. M.; Farha O. K.; Hupp J. T.; Nguyen S. T. Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks. Chem. Sci., 2011, 2(4), 686-689. doi:10.1039/c0sc00339ehttp://dx.doi.org/10.1039/c0sc00339e
Du X.; Sun Y. L.; Tan B. E.; Teng Q. F.; Yao X. J.; Su C. Y.; Wang W. Tröger's base-functionalised organic nanoporous polymer for heterogeneous catalysis. Chem. Commun. (Camb), 2010, 46(6), 970-972. doi:10.1039/b920113khttp://dx.doi.org/10.1039/b920113k
Zhang C. L.; Zhang S. M.; Yan Y. H.; Xia F.; Huang A. N.; Xian Y. Z. Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6-trinitrophenol. ACS Appl. Mater. Interfaces, 2017, 9(15), 13415-13421. doi:10.1021/acsami.6b16423http://dx.doi.org/10.1021/acsami.6b16423
Hao L.; Luo B.; Li X. L.; Jin M. H.; Fang Y.; Tang Z. H.; Jia Y. Y.; Liang M. H.; Thomas A.; Yang J. H.; Zhi L. J. Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy Environ. Sci., 2012, 5(12), 9747-9751. doi:10.1039/c2ee22814ahttp://dx.doi.org/10.1039/c2ee22814a
Song Z. P.; Zhan H.; Zhou Y. H. Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed., 2010, 49(45), 8444-8448. doi:10.1002/anie.201002439http://dx.doi.org/10.1002/anie.201002439
Li B. Y.; Gong R. N.; Wang W.; Huang X.; Zhang W.; Li H. M.; Hu C. X.; Tan B. E. A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules, 2011, 44(8), 2410-2414. doi:10.1021/ma200630shttp://dx.doi.org/10.1021/ma200630s
Sarkar C.; Shit S. C.; Dao D. Q.; Lee J.; Tran N. H.; Singuru R.; An K.; Nguyen D. N.; van Le Q.; Amaniampong P. N.; Drif A.; Jerome F.; Huyen P. T.; Phan T. T. N.; Vo D. V N.; Thanh Binh, N.; Trinh, Q. T.; Sherburne, M. P.; Mondal, J. An efficient hydrogenation catalytic model hosted in a stable hyper-crosslinked porous-organic-polymer: from fatty acid to bio-based alkane diesel synthesis. Green Chem., 2020, 22(6), 2049-2068. doi:10.1039/c9gc03803ehttp://dx.doi.org/10.1039/c9gc03803e
Wood C. D.; Tan B. E.; Trewin A.; Niu H. J.; Bradshaw D.; Rosseinsky M. J.; Khimyak Y. Z.; Campbell N. L.; Kirk R.; Stöckel E.; Cooper A. I. Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem. Mater., 2007, 19(8), 2034-2048. doi:10.1021/cm070356ahttp://dx.doi.org/10.1021/cm070356a
Luo Y. L.; Li B. Y.; Wang W.; Wu K. B.; Tan B. E. Hypercrosslinked aromatic heterocyclic microporous polymers: a new class of highly selective CO2 capturing materials. Adv. Mater., 2012, 24(42), 5703-5707. doi:10.1002/adma.201202447http://dx.doi.org/10.1002/adma.201202447
Schute K.; Rose M. Metal-free and scalable synthesis of porous hyper-cross-linked polymers: towards applications in liquid-phase adsorption. ChemSusChem, 2015, 8(20), 3419-3423. doi:10.1002/cssc.201500829http://dx.doi.org/10.1002/cssc.201500829
Sun Q.; Jiang M.; Shen Z. J.; Jin Y. Y.; Pan S. X.; Wang L.; Meng X. J.; Chen W. Z.; Ding Y. J.; Li J. X.; Xiao F. S. Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts. Chem. Commun., 2014, 50(80), 11844-11847. doi:10.1039/c4cc03884chttp://dx.doi.org/10.1039/c4cc03884c
Huangfu Y.; Sun Q.; Pan S. X.; Meng X. J.; Xiao F. S. Porous polymerized organocatalysts rationally synthesized from the corresponding vinyl-functionalized monomers as efficient heterogeneous catalysts. ACS Catal., 2015, 5(3), 1556-1559. doi:10.1021/acscatal.5b00008http://dx.doi.org/10.1021/acscatal.5b00008
Gao H.; Ding L.; Li W. Q.; Ma G. F.; Bai H.; Li L. Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide. ACS Macro Lett., 2016, 5(3), 377-381. doi:10.1021/acsmacrolett.6b00015http://dx.doi.org/10.1021/acsmacrolett.6b00015
Xie F. F.; Hu W.; Ding L.; Tian K.; Wu Z. C.; Li L. Synthesis of microporous organic polymers via radical polymerization of fumaronitrile with divinylbenzene. Polym. Chem., 2017, 8(39), 6106-6111. doi:10.1039/c7py01240chttp://dx.doi.org/10.1039/c7py01240c
Li G. Y.; Zhang B.; Yan J.; Wang Z. G. Microporous polyimides with functional groups for the adsorption of carbon dioxide and organic vapors. J. Mater. Chem. A, 2016, 4(29), 11453-11461. doi:10.1039/c6ta04337bhttp://dx.doi.org/10.1039/c6ta04337b
Song N. N.; Ma T. N.; Wang T. J.; Li Z.; Yao H.; Guan S. W. Microporous polyimides with high surface area and CO2 selectivity fabricated from cross-linkable linear polyimides. J. Colloid Interface Sci., 2020, 573, 328-335. doi:10.1016/j.jcis.2020.03.113http://dx.doi.org/10.1016/j.jcis.2020.03.113
Narzary B. B.; Baker B. C.; Yadav N.; D'Elia V.; Faul C. F. J. Crosslinked porous polyimides: structure, properties and applications. Polym. Chem., 2021, 12(45), 6494-6514. doi:10.1039/d1py00997dhttp://dx.doi.org/10.1039/d1py00997d
Shen C. J.; Yu H.; Wang Z. G. Synthesis of 1, 3, 5, 7-tetrakis(4-cyanatophenyl)adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide. Chem. Commun., 2014, 50(76), 11238-11241. doi:10.1039/c4cc05021ehttp://dx.doi.org/10.1039/c4cc05021e
刘志红, 吴唯, 张雪薇. HCPs基/棕榈酸复合相变材料的制备及其储热性能. 华东理工大学学报(自然科学版), 2020, 46(3), 360-367. doi:10.14135/j.cnki.1006-3080.20190308001http://dx.doi.org/10.14135/j.cnki.1006-3080.20190308001
Yan J.; Zhang B.; Wang Z. G. Monodispersed ultramicroporous semi-cycloaliphatic polyimides for the highly efficient adsorption of CO2, H2 and organic vapors. Polym. Chem., 2016, 7(47), 7295-7303. doi:10.1039/c6py01734ghttp://dx.doi.org/10.1039/c6py01734g
Sing K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem., 1985, 57(4), 603-619. doi:10.1351/pac198557040603http://dx.doi.org/10.1351/pac198557040603
Yang X. J.; Song K. P.; Tan L. X.; Hussain I.; Li T.; Tan B. E. Hollow microporous organic capsules loaded with highly dispersed Pt nanoparticles for catalytic applications. Macromol. Chem. Phys., 2014, 215(12), 1257-1263. doi:10.1002/macp.201400107http://dx.doi.org/10.1002/macp.201400107
Li G. Y.; Wang Z. G. Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors. Macromolecules, 2013, 46(8), 3058-3066. doi:10.1021/ma400496qhttp://dx.doi.org/10.1021/ma400496q
Liebl M. R.; Senker J. Microporous functionalized triazine-based polyimides with high CO2 capture capacity. Chem. Mater., 2013, 25(6), 970-980. doi:10.1021/cm4000894http://dx.doi.org/10.1021/cm4000894
Singh G.; Lee J.; Karakoti A.; Bahadur R.; Yi J. B.; Zhao D. Y.; AlBahily K.; Vinu A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev., 2020, 49(13), 4360-4404. doi:10.1039/d0cs00075bhttp://dx.doi.org/10.1039/d0cs00075b
Yang Y. Q.; Zhang Q.; Zhang Z. G.; Zhang S. B. Functional microporous polyimides based on sulfonated binaphthalene dianhydride for uptake and separation of carbon dioxide and vapors. J. Mater. Chem. A, 2013, 1(35), 10368-10374. doi:10.1039/c3ta11621bhttp://dx.doi.org/10.1039/c3ta11621b
Banerjee R.; Furukawa H.; Britt D.; Knobler C.; O'Keeffe M.; Yaghi O. M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc., 2009, 131(11), 3875-3877. doi:10.1021/ja809459ehttp://dx.doi.org/10.1021/ja809459e
Li Y.; Wang S. Y.; Wang B. B.; Wang Y.; Wei J. P. Sustainable biomass glucose-derived porous carbon spheres with high nitrogen doping: as a promising adsorbent for CO2/CH4/N2 adsorptive separation. Nanomaterials, 2020, 10(1), 174. doi:10.3390/nano10010174http://dx.doi.org/10.3390/nano10010174
He Q.; Xu Y.; Yang X. Q. Facile synthesis of aminated indole-based porous organic polymer for highly selective capture of CO2 by the coefficient effect of π-π-stacking and hydrogen bonding. RSC Adv., 2019, 9(21), 11851-11854.s. doi:10.1039/c9ra01532ahttp://dx.doi.org/10.1039/c9ra01532a
Liaw D. J.; Wang K. L.; Huang Y. C.; Lee K. R.; Lai J. Y.; Ha C. S. Advanced polyimide materials: syntheses, physical properties and applications. Prog. Polym. Sci., 2012, 37(7), 907-974. doi:10.1016/j.progpolymsci.2012.02.005http://dx.doi.org/10.1016/j.progpolymsci.2012.02.005
Yao S. W.; Yang X.; Yu M.; Zhang Y. H.; Jiang J. X. High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture. J. Mater. Chem. A, 2014, 2(21), 8054-8059. doi:10.1039/c4ta00375fhttp://dx.doi.org/10.1039/c4ta00375f
0
Views
54
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution