浏览全部资源
扫码关注微信
1.重庆大学化学化工学院 重庆 400044
2.北京大学化学与分子工程学院 北京 100871
Xing Fan, E-mail: foxcqdx@cqu.edu.cn
Published:20 October 2023,
Published Online:19 July 2023,
Received:31 March 2023,
Accepted:17 May 2023
扫 描 看 全 文
魏小菲,李瑞,秦龙等.同时实现汗液酸碱监测及预警判断的非印制型聚苯胺基电子织物[J].高分子学报,2023,54(10):1613-1623.
Wei Xiao-fei,Li Rui,Qin Long,et al.A Non-printed Polyaniline-based Integrated Circuit Textile for Simultaneously Sweat Acid-base Monitoring and Early Warning Judgment[J].ACTA POLYMERICA SINICA,2023,54(10):1613-1623.
魏小菲,李瑞,秦龙等.同时实现汗液酸碱监测及预警判断的非印制型聚苯胺基电子织物[J].高分子学报,2023,54(10):1613-1623. DOI: 10.11777/j.issn1000-3304.2023.23086.
Wei Xiao-fei,Li Rui,Qin Long,et al.A Non-printed Polyaniline-based Integrated Circuit Textile for Simultaneously Sweat Acid-base Monitoring and Early Warning Judgment[J].ACTA POLYMERICA SINICA,2023,54(10):1613-1623. DOI: 10.11777/j.issn1000-3304.2023.23086.
多功能集成纤维电极的批量化制备是实现纤维或织物类柔性电子器件大面积穿戴应用的基础. 研究基于高分子半导体材料的柔性、功能性及分子结构可调等特点,开发了一种适合在长尺寸纤维表面分段原位合成聚苯胺层的方法,并分段涂覆导电碳材料,实现了多种分段式多功能集成纤维电极的连续化制备. 通过对纤维基底进行氧化改性,可增强纤维基底对苯胺底物的亲和性,克服因毛细浸润或脱附等导致的高分子功能层边界弥散问题. 在此基础上,结合新型织物结构电路设计,编织了一种可同时实现人体汗液pH值连续监测以及健康状态判断预警的织物结构集成电路模块. 其可与纤维结构Zn/MnO
2
电池共同编织,并与微型无线芯片、发光二极管等集成,实现人体健康的不间断无感无线监测及异常情况预警,展现了在未来可穿戴AI硬件中的应用潜力.
The mass production of multifunctional integrated fiber electrodes is the foundation for achieving large-scale wearable applications of fiber or fabric-based electronic devices. Based on the flexible
functional and molecular structure adjustable characteristics of polymer semiconductor materials
a method for segmental
in situ
synthesis of polyaniline functional layers on long fiber surfaces has been put forward in this work. And then
coated with conductive carbon materials
this allows for the successful continuous preparation of segmental multifunctional integrated fiber electrodes. By modifying the fiber substrate with oxidative treatment
the affinity of the fiber substrate to the aniline substrate can be enhanced
which overcomes the problem of polymer functional layer boundary diffusion caused by capillary wetting or detachment. On this basis
according to a kind of novel textile-based circuit design
a textile-structured integrated circuit module has been developed
which can simultaneously realize continuous monitoring of human sweat pH value
health status judgment
and early warning. Co-woven with the fiber-structured Zn/MnO
2
batteries
as well as integrated with mini wireless chips
light-emitting diodes
etc
.
this integrated circuit textile enables consecutive human body wireless monitoring and timely emergency warning for abnormal situations
demonstrating its potential application in future wearable AI hardware.
高分子半导体聚苯胺分段原位合成多功能集成纤维电极可穿戴
Polymer semiconductorPolyanilineSegmental in situ synthesisMultifunctional integrated fiber electrodesWearable
Kwak S. S.; Yoo S.; Avila R.; Chung H. U.; Jeong H.; Liu C.; Vogl J. L.; Kim J.; Yoon H. J.; Park Y.; Ryu H.; Lee G.; Kim J.; Koo J.; Oh Y. S.; Kim S.; Xu S.; Zhao Z. C.; Xie Z. Q.; Huang Y. G.; Rogers J. A. Skin-integrated devices with soft, holey architectures for wireless physiological monitoring, with applications in the neonatal intensive care unit. Adv. Mater., 2021, 33(44), 2103974. doi:10.1002/adma.202103974http://dx.doi.org/10.1002/adma.202103974
Liu C.; Kim J. T.; Kwak S. S.; Hourlier-Fargette A.; Avila R.; Vogl J.; Tzavelis A.; Chung H. U.; Lee J. Y.; Kim D. H.; Ryu D.; Fields K. B.; Ciatti J. L.; Li S. P.; Irie M.; Bradley A.; Shukla A.; Chavez J.; Dunne E. C.; Kim S. S.; Kim J.; Bin Park J.; Jo H. H.; Kim J.; Johnson M. C.; Kwak J. W.; Madhvapathy S. R.; Xu S.; Rand C. M.; Marsillio L. E.; Hong S. J.; Huang Y. G.; Weese-Mayer D. E.; Rogers J. A. Wireless, skin-interfaced devices for pediatric critical care: application to continuous, noninvasive blood pressure monitoring. Adv. Healthc. Mater., 2021, 10(17), 2100383. doi:10.1002/adhm.202100383http://dx.doi.org/10.1002/adhm.202100383
Yang Y. X.; Wei X. F.; Zhang N. N.; Zheng J. J.; Chen X.; Wen Q.; Luo X. X.; Lee C. Y.; Liu X. H.; Zhang X. C.; Chen J.; Tao C. Y.; Zhang W.; Fan X. A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun., 2021, 12(1), 4876. doi:10.1038/s41467-021-25075-8http://dx.doi.org/10.1038/s41467-021-25075-8
Zhang N. N.; Li Y. Z.; Xiang S. W.; Guo W. W.; Zhang H.; Tao C. Y.; Yang S.; Fan X. Imperceptible sleep monitoring bedding for remote sleep healthcare and early disease diagnosis. Nano Energy, 2020, 72, 104664. doi:10.1016/j.nanoen.2020.104664http://dx.doi.org/10.1016/j.nanoen.2020.104664
王钊, 梁洪, 王佳晨, 藏雅宁, 徐浩然, 兰珂, 贺茂庆, 颜伟, 曹德森, 晏沐阳, 张政波. 基于可穿戴技术的临床监护新模式探索研究. 生物医学工程学杂志, 2021, 38(4), 753-763. doi:10.7507/1001-5515.202010021http://dx.doi.org/10.7507/1001-5515.202010021
徐令仪, 汪长岭, 毛靖宁, 刘铁兵. 可穿戴技术在生理信号监测中的应用和发展. 中国医疗设备, 2018, 33(3): 118-120. doi:10.3969/j.issn.1674-1633.2018.03.031http://dx.doi.org/10.3969/j.issn.1674-1633.2018.03.031
Jung Y. H.; Kim J. H.; Rogers J. A. Skin-integrated vibrohaptic interfaces for virtual and augmented reality. Adv. Funct. Mater., 2021, 31(39), 2008805. doi:10.1002/adfm.202008805http://dx.doi.org/10.1002/adfm.202008805
Kim J.; Imani S.; de Araujo W. R.; Warchall J.; Valdés-Ramírez G.; Paixão T. R. L. C.; Mercier P. P.; Wang J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron., 2015, 74, 1061-1068. doi:10.1016/j.bios.2015.07.039http://dx.doi.org/10.1016/j.bios.2015.07.039
Nyein H. Y. Y.; Bariya M.; Tran B.; Ahn C. H.; Brown B. J.; Ji W. B.; Davis N.; Javey A. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun., 2021, 12(1), 1823. doi:10.1038/s41467-021-22109-zhttp://dx.doi.org/10.1038/s41467-021-22109-z
Lee K.; Ni X. Y.; Lee J. Y.; Arafa H.; Pe D. J.; Xu S.; Avila R.; Irie M.; Lee J. H.; Easterlin R. L.; Kim D. H.; Chung H. U.; Olabisi O. O.; Getaneh S.; Chung E.; Hill M.; Bell J.; Jang H.; Liu C.; Bin Park J.; Kim J.; Kim S. B.; Mehta S.; Pharr M.; Tzavelis A.; Reeder J. T.; Huang I.; Deng Y. J.; Xie Z. Q.; Davies C. R.; Huang Y. G.; Rogers J. A. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal Notch. Nat. Biomed. Eng., 2020, 4(2), 148-158. doi:10.1038/s41551-019-0480-6http://dx.doi.org/10.1038/s41551-019-0480-6
宋江, 王腾蛟, 冯涛, CHAN S. Y., 荣帆, 李鹏, 黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述. 材料导报, 2020, 34(1): 1126-1134. doi:10.11896/cldb.19100178http://dx.doi.org/10.11896/cldb.19100178
Zhang N. N.; Chen J.; Huang Y.; Guo W. W.; Yang J.; Du J.; Fan X.; Tao C. Y. A wearable all-solid photovoltaic textile. Adv. Mater., 2016, 28(2), 263-269. doi:10.1002/adma.201504137http://dx.doi.org/10.1002/adma.201504137
Xiang S. W.; Zhang N. N.; Fan X. From fiber to fabric: pogress towards photovoltaic energy textile. Adv. Fiber Mater., 2021, 3(2), 76-106. doi:10.1007/s42765-020-00062-8http://dx.doi.org/10.1007/s42765-020-00062-8
Yu H.; Xiang S. W.; Tao H. M.; Xue J.; Tao C. Y.; Li C. M.; Zhang N. N.; Fan X. Embroidering a light and foldable photovoltaic gauze kerchiefs. Energy Technol., 2021, 9(9), 2100285. doi:10.1002/ente.202100285http://dx.doi.org/10.1002/ente.202100285
Zhang N. N.; Huang F.; Zhao S. L.; Lv X. H.; Zhou Y. H.; Xiang S. W.; Xu S. M.; Li Y. Z.; Chen G. R.; Tao C. Y.; Nie Y.; Chen J.; Fan X. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter, 2020, 2(5), 1260-1269. doi:10.1016/j.matt.2020.01.022http://dx.doi.org/10.1016/j.matt.2020.01.022
Huang F.; Yu H.; Xiang S. W.; Xue J.; Ming H.; Tao C. Y.; Zhang N. N.; Fan X. Embroidering a filmsy photorechargeable energy fabric with wide weather adaptability. ACS Appl. Mater. Interfaces, 2020, 12(3), 3654-3660. doi:10.1021/acsami.9b19731http://dx.doi.org/10.1021/acsami.9b19731
Yang Y. X.; Zhang N. N.; Zhang B. F.; Zhang Y. X.; Tao C. Y.; Wang J. E.; Fan X. Highly-efficient dendritic cable electrodes for flexible supercapacitive fabric. ACS Appl. Mater. Interfaces, 2017, 9(46), 40207-40214. doi:10.1021/acsami.7b11263http://dx.doi.org/10.1021/acsami.7b11263
Fang Y. S.; Xu J.; Xiao X.; Zou Y. J.; Zhao X.; Zhou Y. H.; Chen J. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring. Adv. Mater., 2022, 34(24), 2200252. doi:10.1002/adma.202200252http://dx.doi.org/10.1002/adma.202200252
Wang H. M.; Li S.; Wang Y. L.; Wang H. M.; Shen X. Y.; Zhang M. C.; Lu H. J.; He M. S.; Zhang Y. Y. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater., 2020, 32(11), 1908214. doi:10.1002/adma.201908214http://dx.doi.org/10.1002/adma.201908214
Wei X. F.; Zhang W.; Fan X. Nonprinted IC textiles for wearable electronics. Acc. Mater. Res., 2022, 3(12), 1201-1205. doi:10.1021/accountsmr.2c00150http://dx.doi.org/10.1021/accountsmr.2c00150
Yan K.; Chen B. X.; Hu H.; Chen S.; Dong B.; Gao X.; Xiao X. Y.; Zhou J. B.; Zou D. C. First fiber-shaped non-volatile memory device based on hybrid organic-inorganic perovskite. Adv. Electron. Mater., 2016, 2(8), 1600160. doi:10.1002/aelm.201600160http://dx.doi.org/10.1002/aelm.201600160
Xu X. J.; Zhou X. F.; Wang T. Y.; Shi X.; Liu Y.; Zuo Y.; Xu L. M.; Wang M. Y.; Hu X. F.; Yang X. J.; Chen J. X.; Yang X. B.; Chen L.; Chen P. N.; Peng H. S. Robust DNA-bridged memristor for textile chips. Angew. Chem. Int. Ed., 2020, 59(31), 12762-12768. doi:10.1002/anie.202004333http://dx.doi.org/10.1002/anie.202004333
Huang X. Y.; Niu Q. Q.; Fan S. N.; Zhang Y. P. Highly oriented lamellar polyaniline with short-range disorder for enhanced electrochromic performance. Chem. Eng. J., 2021, 417, 128126. doi:10.1016/j.cej.2020.128126http://dx.doi.org/10.1016/j.cej.2020.128126
Tian X.; Cui X. X.; Xiao Y. W.; Chen T.; Xiao X. C.; Wang Y. D. Pt/MoS2/polyaniline nanocomposite as a highly effective room temperature flexible gas sensor for ammonia detection. ACS Appl. Mater. Interfaces, 2023, 15(7), 9604-9617. doi:10.1021/acsami.2c20299http://dx.doi.org/10.1021/acsami.2c20299
Ren B. H.; Li Y. Q.; Meng D. L.; Li J. J.; Gao S. Y.; Cao R. Encapsulating polyaniline within porous MIL-101 for high-performance corrosion protection. J. Colloid Interface Sci., 2020, 579, 842-852. doi:10.1016/j.jcis.2020.06.127http://dx.doi.org/10.1016/j.jcis.2020.06.127
Ahirrao D. J.; Pal A. K.; Singh V.; Jha N. Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device. J. Mater. Sci. Technol., 2021, 88, 168-182. doi:10.1016/j.jmst.2021.01.075http://dx.doi.org/10.1016/j.jmst.2021.01.075
Drago N. P.; Choi E. J.; Shin J.; Kim D. H.; Penner R. M. A nanojunction pH sensor within a nanowire. Anal. Chem., 2022, 94(35), 12167-12175. doi:10.1021/acs.analchem.2c02606http://dx.doi.org/10.1021/acs.analchem.2c02606
Mohammed H. A.; Rashid S. A.; Abu Bakar M. H.; Ahmad Anas S. B.; Mahdi M. A.; Yaacob M. H. Fabrication and characterizations of a novel etched-tapered single mode optical fiber ammonia sensors integrating PANI/GNF nanocomposite. Sens. Actuat. B, 2019, 287, 71-77. doi:10.1016/j.snb.2019.01.115http://dx.doi.org/10.1016/j.snb.2019.01.115
Mohamad A.; Rizwan M.; Keasberry N. A.; Nguyen A. S.; Lam T. D.; Ahmed M. U. Gold-microrods/Pd-nanoparticles/polyaniline-nanocomposite-interface as a peroxidase-mimic for sensitive detection of tropomyosin. Biosens. Bioelectron., 2020, 155, 112108. doi:10.1016/j.bios.2020.112108http://dx.doi.org/10.1016/j.bios.2020.112108
Liao G. F.; Li Q.; Xu Z. S. The chemical modification of polyaniline with enhanced properties: a review. Prog. Org. Coat., 2019, 126, 35-43. doi:10.1016/j.porgcoat.2018.10.018http://dx.doi.org/10.1016/j.porgcoat.2018.10.018
Kelley T. W.; Baude P. F.; Gerlach C.; Ender D. E.; Muyres D.; Haase M. A.; Vogel D. E.; Theiss S. D. Recent progress in organic electronics: materials, devices, and processes. Chem. Mater., 2004, 16(23), 4413-4422. doi:10.1021/cm049614jhttp://dx.doi.org/10.1021/cm049614j
Stejskal J.; Gilbert, R. G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem., 2002, 74(5), 857-867. doi:10.1351/pac200274050857http://dx.doi.org/10.1351/pac200274050857
Patterson M. J.; Galloway S. D. R.; Nimmo M. A. Effect of induced metabolic alkalosis on sweat composition in men. Acta Physiol. Scand., 2002, 174(1), 41-46. doi:10.1046/j.1365-201x.2002.00927.xhttp://dx.doi.org/10.1046/j.1365-201x.2002.00927.x
Chikakane K.; Takahashi H. Measurement of skin pH and its significance in cutaneous diseases. Clin. Dermatol., 1995, 13(4), 299-306. doi:10.1016/0738-081x(95)00076-rhttp://dx.doi.org/10.1016/0738-081x(95)00076-r
Zhu C. H.; Xue H.; Zhao H. R.; Fei T.; Liu S.; Chen Q. D.; Gao B. R.; Zhang T. A dual-functional polyaniline film-based flexible electrochemical sensor for the detection of pH and lactate in sweat of the human body. Talanta, 2022, 242, 123289. doi:10.1016/j.talanta.2022.123289http://dx.doi.org/10.1016/j.talanta.2022.123289
Gao Z. F.; Sann E. E.; Lou X. D.; Liu R. Y.; Dai J.; Zuo X. L.; Xia F.; Jiang L. Naked-eye point-of-care testing platform based on a pH-responsive superwetting surface: Toward the non-invasive detection of glucose. NPG Asia Mater., 2018, 10(4), 177-189. doi:10.1038/s41427-018-0024-7http://dx.doi.org/10.1038/s41427-018-0024-7
0
Views
29
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution